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1. Analysis of Computational Complexity
The computational complexity of pixel-level dense

query-memory matching in STM [7] or STCN [4] is
O(TH2W 2). In our patch-level memory matching
(PLMM), the main computational complexity consists of
two parts: (1) O(TN2) for the computation of patch-level
affinity scores and (2) O(NKH2

pW
2
p ) for the computa-

tion of pixel-level query-memory matching weights within
patches. Therefore, the overall computational complexity
of PLMM is O(TN2 + NKH2

pW
2
p ). Since Hp ≪ H ,

Wp ≪ W and K is usually small, the computational com-
plexity of PLMM is greatly reduced, compared with the
vanilla dense query-memory matching computational com-
plexity. Furthermore, there is no softmax operation in-
volved in the computation of patch-level affinity scores.
Hence, our overall computational complexity is further re-
duced.

2. Dataset Details
The 4D cMR dataset used in our work is curated from

three public 4D cMR datasets: ACDC [1], MnM [2], and
MnM-2 [6]. For ACDC, there are 100 cases in the train-
ing set and 50 cases in the testing set. For MnM, there are
175 cases in the training set, 34 cases in the validation set,
and 136 cases in the testing set. For MnM-2, there are 160
cases in the training set and 40 cases in the validation set;
the testing set is not released publicly. Apart from the val-
idation set of MnM-2, mask annotations on the ED and ES
phases of each 4D cMR set in these datasets are presented.
We trained and tested CSTM based on these sparsely anno-
tated cMR data. We combined the training sets in the three
datasets as our own training set, which gives 435 4D cMR
cases. And in the main text, we have reported the testing
results on the ACDC testing set (50 cases) and the MnM
validation and testing sets (170 cases), respectively.

All the three cMR datasets are of multiple cardiovas-
cular pathologies and healthy volunteers. While ACDC
is a single-center dataset, MnM and MnM-2 are both
multi-center and multi-vendor datasets. Of particular, in

the validation and testing datasets of MnM, there exists
an out-of-distribution subdataset (center-5, MRI scanner
manufacturer-Canon), which is not presented in the train-
ing dataset. Therefore, MnM is a more heterogeneous cMR
dataset compared with ACDC.

3. Training and Inference Details
Each training sample consists of three frames, either

sampled along the temporal axis (ED-ES-ED) or spatially
ordered along the z-axis with a maximum spatial sampling
distance of 5. The online data augmentation exactly follows
the strategies used in the main training stage of STCN [4].
Basically, random horizontal flip, random resized cropping
(of size 384), color jitter, random grayscale, and random
affine transformation were included in the data augmenta-
tion. More details could be found in STCN [4].

We took at most two areas of the heart presenting
on the first frame as segmentation targets. The key en-
coder (ResNet-50) and value encoder (ResNet-18) were
pre-trained on ImageNet [5]. The batch size was set as 4.
Adam optimizer was used with default momentum β1 =
0.9, β2 = 0.999, a base learning rate of 10−5, and a L2

weight decay of 10−7. The training was performed for
300K iterations.

During inference, we resized each input 2D cMR image
to ensure the shorter side has a size of 384 pixels. The pre-
dicted segmentation mask was then resized to the original
cMR image size.

4. Training and Inference Details for Baseline
Methods

For baseline methods STM [7], HMMN [8], STCN [4],
and XMem [3], we follow the same training and infer-
ence schemes used for natural scene videos. For each 4D
cMR data, we sequentially combined all 2D cMR sequences
along the z-axis as a single long temporal sample, which
was used for training or testing the baseline methods. Note
that, each segment of 2D cMR sequence at a specific z po-
sition covers a full cardiac cycle. Therefore, the temporal
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continuity is still preserved in the long temporal samples.
We followed the original hyper-parameter settings to

train these baseline models on the cMR dataset, with
weights of their key and value encoders (ResNets) initial-
ized from ImageNet [5] pre-training.

During inference, all baseline methods took the first
frame (at the middle myocardium wall level) with annota-
tion masks as the memory and propagated the masks bi-
directionally towards the basal or apex regions. For subse-
quent query frames, both STM and HMMN took every fifth
frame as a memory frame, and the immediately previous
frame as a temporary memory frame. STCN took every fifth
query frame as a memory frame. XMem has three memory
stores: sensory memory, working memory and long-term
memory. The sensory memory was updated every query
frame. The working memory was updated every fifth query
frame following the First-In-First-Out (FIFO) approach to
ensure the total number of memory frames Tmax ≤ 5. For
most cases, the long-term memory was disabled since these
temporal samples were not that long (usually less than 1K
frames). When the long-term memory was enabled, we fol-
lowed the long-term memory generation method proposed
in XMem.
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