U-MixFormer: UNet-like Transformer with Mix-Attention for Efficient Semantic Segmentation

Seul-Ki Yeom Nota AI GmbH Mariendorfer Damm 1, 12099 Berlin, Germany skyeom@nota.ai

A. Experimental Results

A.1. Training and Evaluation Setting

We followed the default settings provided by mmsegmentation. Models were trained on a server with 2 NVIDIA A100 GPUs, using pre-trained encoders from the ImageNet-1K dataset. Training included augmentations like random resizing (with a ratio between 0.5 and 2), random horizontal flipping, and cropping - to dimensions of 512×512 for the ADE20K dataset and 1024×1024 for Cityscapes. Following [1], for our largest MiT encoder, B5, we adjusted the cropping size to 640×640 on ADE20K. AdamW optimizer was employed across 160K iterations for both datasets. We set the batch sizes to 16 for ADE20K and 8 for Cityscapes. We initialized the learning rate at 6e-5 and adopted a polynomial learning rate decay schedule with a default factor of 1.0. For the loss function, we employed a standard cross-entropy loss with a weight of 1.0, ensuring robust training stability and balanced class representation.

Evaluations were conducted on the ADE20K and Cityscapes *valid*. Particularly Cityscapes was used for a sliding window, cropping into windows size of 1024×1024 . The semantic segmentation results regarding the mean Intersection over Union (mIoU) based on a single-scale inference paradigm are presented.

A.2. Additional Qualitative Results

In addition to the qualitative results presented in Figure 5 for U-MixFormer, SegFormer, and FeedFormer, Supplementary Figure 1 shows further examples of U-MixFormer's superiority in accurately segmenting object boundaries.

A.3. Effectiveness of Decoding Head with the same MiT Encoder

For convenience, Supplementary Table 1 summarizes the results of Tables 1 and 2 for U-MixFormer, SegFormer, and FeedFormer, which share the same encoder MiT in different

Julian von Klitzing Nota AI GmbH Mariendorfer Damm 1, 12099 Berlin, Germany julian.von.klitzing@campus.tu-berlin.de

sizes from the smallest B0 to the largest B5. Considering the same size for MiT, U-MixFormer achieves higher performance (mIoU) while maintaining lower computational cost (GFLOPs).

References

[1] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 10012–10022, October 2021. 1

Method	GFLOPs ↓						mIoU↑					
	B0	B1	B2	B3	B4	B5	B0	B1	B2	B3	B4	B5
SegFormer	8.4	15.9	62.4	79.0	95.7	183.3	37.4	42.2	46.5	49.4	50.3	51.0
FeedFormer	7.8	-	42.7	-	-	-	39.2	-	48.0	-	-	-
U-MixFormer	6.1	17.8	40.0	56.8	74.5	152.5	41.2	45.2	48.2	49.8	50.4	52.0

Supplementary Table 1. Performance and efficacy comparison of three transformer decoders, using the MiT encoder in varying size (B0 - B5) on ADE20K.

Supplementary Figure 1. Qualitative analysis on ADE20K and Cityscapes datasets for U-MixFormer, SegFormer, and FeedFormer. All methods utilize the same encoder MiT-B0. U-MixFormer's superior object boundaries segmentation: first row (house/wall), second row (bed/wall), third row (box/lamp), fourth row (group of "pole" segments), fifth row (group of "building" segments)