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(Appendix)

A. Maths

A.1. Repeatability

Given two keypoint sets Ep = {(pEp

i , d
Ep

i )}, Ip =

{(pIpi , d
Ip
i )} and the homography H between two imag-

ing plane, only those which can find a corresponding
point within a spatial distance threshold of ϵ in an-
other set of keypoints after been warped with H are
treated as valid keypoints. In practice, the H is an
identity matrix when evaluating on events and the corre-
sponding image at the same timestamp. After that, two
valid keypoint sets Evalid and Ivalid are filtered out, and
{(pEvalid

i , dEvalid
i ), (pIvalid

i , dIvalid
i )} are the corresponding

valid keypoints. Then, the Repeatability is computed as fol-
lowing:

Repeatability =
|Evalid|+ |Ivalid|

|Ep|+ |Ip|
. (1)

A.2. VDD and VDA

Given the valid keypoint sets Evalid and Ivalid, the valid
descriptor distance (VDD) and valid distance angle (VDA)
are computed as following:

VDD =
1

N

N∑
i=1

∥dEvalid
i − dIvalid

i ∥2, (2)

VDA =
1

N

N∑
i=1

arccos(∥dEvalid
i − dIvalid

i ∥2). (3)

A.3. RPE Ratio and RPE AUC

Given two matched keypoint sets, the essential matrix
E is firstly estimated by using cv.findEssentialMat() with
RANSAC, then the estimated rotation R̂ and translation t̂
are then recovered. When a list of relative pose estimation
results {R̂, t̂} with corresponding ground truth {Rgt, tgt},
the error of R̂ and t̂ are defined as the angular error between

Algorithm 1 RPE AUC Pseudocode, Numpy-like

def compute_auc(errors, threshold):
errors = errors[np.isfinite(errors)]

sort_idx = np.argsort(errors)
errors = np.array(errors.copy())[sort_idx]
recall = (np.arange(len(errors)) + 1) / len(

errors)
errors = np.r_[0.0, errors]
recall = np.r_[0.0, recall]

last_index = np.searchsorted(errors, threshold)
rec = np.r_[recall[:last_index], recall[

last_index - 1]]
err = np.r_[errors[:last_index], threshold]
auc = np.trapz(rec, x=err) / threshold
return auc

the estimation and the ground truth:

Rerr =
tr

(
R̂⊤Rgt

)
− 1

2
,

terr =
t̂− tgt

∥t̂∥ · ∥tgt∥
.

(4)

The pose error erri of the current estimation is defined as
the maximum error of Rerr

i and terri . The RPE Ratio is
then computed:

Ratio =
|{erri ≤ ϵ}|
|{erri}|

, (5)

where ϵ is the specified threshold of angle. For RPE
AUC, the area under curve (AUC) is calculated following
SiLK [5]. Given a threshold ϵ and the estimation errors
{erri}, the calculation code is described in Algorithm 1.

A.4. Groundtruth assignment

Given two keypoint sets Ep and Ip, corresponding depth
map dE and dI , camera matrix KE and KI , and current
pose RE , tE ,RI , tI of event view and image view, the rel-
ative poses TE→I and TI→E are computed first. Then, the

1



Image
Extractor

Method MMA MR HE Inlier HE Ratio HE AUC
ϵ = 1 ϵ = 3 ϵ = 3 ϵ = 5 ϵ = 10 ϵ = 3 ϵ = 5 ϵ = 10

SuperPoint
E2VID 0.248 0.571 0.448 0.503 0.560 0.772 0.939 24.17 41.53 64.55
HyperE2VID 0.209 0.511 0.395 0.468 0.434 0.691 0.898 16.22 33.62 59.01
Ours (SuperPoint) 0.249 0.660 0.546 0.571 0.585 0.843 0.959 21.00 42.90 67.77

SiLK
E2VID 0.145 0.303 0.331 0.279 0.626 0.772 0.838 29.32 46.27 64.09
HyperE2VID 0.097 0.217 0.317 0.201 0.444 0.611 0.762 18.58 32.88 51.89
Ours (SiLK) 0.267 0.485 0.258 0.456 0.691 0.883 0.944 32.23 51.44 72.16

Table 1. MMA, MR and HE results on EC-RPE set. MNN is employed for feature matching.

keypoints of one view are projected into the other view:

pE→I
i =KI 1

z
TE→IdEi

(
KE

)−1 [
pE
i , 1

]⊤
,

pI→E
j =KE 1

z
TI→EdIj

(
KI

)−1 [
pI
j , 1

]⊤
,

(6)

where z is the normalization term to normalize the depth of
the points into unit length. Then the re-projection distance
matrix DM×N is computed:

Dij = max
(
∥pE→I

i − pI
j∥22, ∥pE

i − pI→E
j ∥22

)
. (7)

According to DM×N , the ground-truth assignment PM×N

is then calculated. Elements Pij are marked as positive,
only if they have the minimum distance in both i-th row and
j-th column, and the distance Dij smaller than a threshold
ϵ2p:

Pij =

{
1,Dij ≤ D:j ,Dij ≤ Di:,Dij < ε2p;
0, others.

(8)

Finally, the ground-truth matches Mgt are obtained through
selecting all the (i, j) pairs that have Pij=1.

B. More Implementation Details
B.1. Implementation with SuperPoint

We utilize the SuperPoint architecture and the pre-
trained model from the official LightGlue training reposi-
tory [6], which consists of 1.30M parameters in total. The
CNN-based backbone encodes the grayscale image IH×W

into latent feature I
H
8 ×W

8 ×128

f . Score head and descriptor

head separately predict a score map I
H
8 ×W

8 ×65
score and a de-

scriptor map I
H
8 ×W

8 ×256

desc . Then the dustbin dimension of

Iscore is removed and I
H
8 ×W

8 ×64
score is reshaped into IH×W×1

score

through pixel shuffle. After that, the keypoint extraction
procedure from SiLK [5] is employed, which produces a
set of keypoint positions pi. The di of the keypoint in pi
is then extracted from the normalized Idesc through bilinear
sampling.

When employing the event extractor EE corresponding
to SuperPoint, the dimensions of the latent feature, score
map, and descriptor map are supposed to be the same as

SuperPoint, due to the implementation of the proposed lo-
cal feature distillation. In practice, we construct a VGG-like
architecture as EE that has 1.31M parameters. During train-
ing, we perform the cosine learning schedule with an initial
learning rate of 1×10−3 for 50 epochs, and the batch size is
set to 8.

B.2. Implementation with SiLK

We perform the official SiLK model that uses no max-
pooling and consists of 1.57M parameters. In this case, it
generates IH×H×128

f , IH×W×1
score , IH×W×128

desc in full resolu-
tion. Therefore, we do not use max-pooling in our VGG-
like EE with 1.10M parameters when training with SiLK.
The learning hyper-parameters are set the same as used in
the SuperPoint implementation.

B.3. Mutual Nearest Neighbor

Give two keypoint sets Ep=
{
pEi , d

E
i

}
and

Ip=
{
pIi , d

I
i

}
, a similarity matrix SM×N is firstly

computed:

Sij =
(
dEi

)⊤
dIj . (9)

The estimated assignment P̂ is obtained by applying a soft-
max operation followed by a logarithm on each axis:

P̂ = log

(
exp (Sij)∑
exp (S:j)

)
+ log

(
exp (Sij)∑
exp (Si:)

)
. (10)

The final predicted matches M̂ are obtained through filtering
all the possible (i, j) pairs where P̂ij have the largest value
among the i-th row and the j-th column.

B.4. LightGlue

LightGlue is a representative Context Aggregation (CA)
method that uses attention techniques to aggregate informa-
tion within the keypoint set and between keypoint sets. We
follow the official implementation of LightGlue, but ignore
the point pruning and early stop procedure, which are de-
signed to boost inference speed and do not affect the match-
ing performance. During training, we utilize a cosine sched-
ule with an initial learning rate of 1×10−4 for 50 epochs.
The batch size is set to 8.
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Figure 1. Matching results on EC-RPE set for relative pose estimation. Features from the image are extracted by SuperPoint.

C. Additional Experiments

C.1. More Cross-modal Keypoint Similarity Results

Mean Matching Accuracy and Matching Rate. Follow-
ing SiLK [5], we further evaluate the cross-modal keypoint
similarity with mean matching accuracy (MMA). Given the
events and image at the same timestamp, the MMA mea-
sures the accuracy of the valid matching pairs by applying
an MNN for feature matching. We set two thresholds ϵ=1
and ϵ=3 to obtain valid checks. In addition, the matching
rate (MR) which calculates the ratio of the matched pairs is
also evaluated for a more comprehensive comparison. The
MMA and MR results are shown in Table 1. Our frame-
work surpasses the explicit transform methods by a large
margin in most situations, showing the best keypoint simi-
larity among all methods.
Homography Estimation. Since the events and image are
at the same timestamp when evaluating the cross-modal
keypoint similarity, the homography between two imaging
planes is an identity transform. We follow previous feature
matching methods [2, 5, 7] to construct a Homography Es-
timation (HE) task for event-image feature matching. The

matched keypoint pairs are used for estimating a homog-
raphy Ĥ using cv.findHomography() with RANSAC. The
corner error between the images warped with the estimated
homography Ĥ and the ground-truth homography Hgt=I
is then computed for correctness identification. Lastly, the
HE Inlier ratio from RANSAC, the HE Ratio and HE AUC
under different thresholds are computed. As shown in Ta-
ble 1, our method achieves the most accurate estimation re-
sult, emphasizing the superiority of the direct inter-modality
feature matching proposed by EI-Nexus.

C.2. More Relative Pose Estimation Results

We further show the inter-modality RPE results on the
EC-RPE set. As shown in Fig. 1, the RPE results of EI-
Nexus are much better than event-to-video methods, and
even better than image-image results for some instances.
It indicates that the image local feature extraction methods
that trained on a specific dataset, could not always perform
well in new scenes, and no suitable fine-tuning approach for
now is presented for image-based local extraction. In con-
trast, our proposed framework can achieve superior and sta-
ble performance through the use of the simple yet effective
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Figure 2. Comparison of different post-processing parameters of keypoint extraction and different matchers. The keypoint similarity
and RPE metrics are evaluated and compared across a variety of different test scenarios.

local feature distillation (LFD) approach. This highlights
the broad applicability and ease of implementation of our
method.

C.3. Extraction Post-processing Parameters and
Properties of Matchers.

The hyper-parameters governing the keypoint extraction
process exert a decisive influence on the quality of the final
keypoints. Since the border removal is to prevent keypoint
selection from fake edge information, we do not consider
that and investigate the influence of the NMS radius and
top-k instead.

As presented in Fig. 2, it is observed that the trends
for the settings of NMS=4 and NMS=9 exhibit similar
patterns. When enlarging k, the Repeatability decreases,
meaning the quality of the keypoint set declines. Concur-
rently, the MNN exhibits worse RPE performance when k
is larger, while the LG behaves in the opposite manner. We
also notice that the performance with NMS=9 does not
change when the k value exceeds 1024, as the top-k key-
point selection is unable to detect additional keypoints when
the score map becomes too sparse after applying a large
NMS radius. In addition, the performance using an NMS
radius of 4 is usually better than 9, except for the RPE AUC
when utilizing the LG approach. This is because the us-
age of the position encoding guides the LG method to focus
more on the points that are spread widely.

When NMS is not applied, the extracted keypoints are
clustered since the scores around a keypoint are usually
close to it. In this case, a region of keypoints will be ex-
tracted without NMS, resulting in a higher probability of
having an intersection area with another region. However,
the matching results are not satisfying when applying MNN
because lack of points in different fields of view, unless the
extracted points are enough but not too much. In addition,
for the LG method, the RPE AUC could not achieve good
results because of the use of position encoding.

The observations presented above suggest that the post-
processing procedure of keypoint extraction is highly im-
portant for local feature extraction and downstream feature-
matching tasks. In addition, the analyses underscore the

Method AVG Pose Error↓ RPE Ratio ↑ RPE AUC ↑
ϵ = 5° ϵ = 10° ϵ = 20° ϵ = 5° ϵ = 10° ϵ = 20°

HyperE2VID 48.46 0.00 0.17 0.21 0.00 7.04 13.54
Ours 42.32 0.04 0.26 0.34 2.74 10.06 21.03

Table 2. Relative pose estimation results on the EVIMO2
dataset.

Ours (SuperPoint+LightGlue)

HyperE2VID (SuperPoint+LightGlue)

pose error: 6.60

pose error: 28.57

Figure 3. Matching results on EVIMO2 dataset. Features are
extracted by SuperPoint and matched by LightGlue.

importance of choosing appropriate post-processing param-
eters for specific scenarios and models.

C.4. Results on Depth-aware System

For depth-aware systems [1, 3, 4], in which the event
camera and regular camera are deployed separately, the
pixel-level correspondence could be obtained by reproject-
ing the image from the imaging plane of the regular camera
into the imaging plane of event camera according to the ex-
trinsic parameters and the depth of each pixel in the original
image.

Following this pipeline, we test our framework on the
EVIMO2 dataset, which contains an RGB camera with
2080×1552 resolution and two Prophesee cameras with
640×480 resolution. We use the sequences from the sfm
scenario in our experiments.



Method Data Processing (ms) Model Extractor (ms) Matcher (ms)

E2VID+ 10.9
SP+MNN 18.5 35.2
SP+LG 17.8 51.7

HyperE2VID 10.8
SiLK+MNN 29.1 37.7
SiLK+LG 29.3 49.1

Ours 46.0

SP+MNN 19.1 36.5
SP+LG 19.1 53.5
SiLK+MNN 29.3 34.5
SiLK+LG 28.9 54.5

Table 3. Comparison on inference time. SP represents Super-
Point [2] and LG represents LightGlue [6].

The event extractor is trained through LFD using the
events and reprojected images. Then we train LightGlue
as a learnable matcher using the events and original im-
ages, given their ground-truth relative poses. For evalu-
ation, the events from the event camera and the original
image from the regular camera at the same timestamp are
used for matching. The matches are then used to estimate
the extrinsic parameter between those two cameras. Results
are shown in Table 2 and quantitative results are shown in
Fig. 3. In such a depth-aware system, our model still works
better than those that apply explicit modality transformation
first. It should be emphasized that our method only needs
events from a short time interval [tj − ∆t, tj ], while the
event-to-video methods need long-term previous informa-
tion of the sequence.

C.5. Inference Time

We give the inference time of the models tested on an
NVIDIA A800 GPU. Data processing time for event-to-
video methods means the time consumption for reconstruct-
ing one frame. Our model converts the voxel grid and com-
putes an event mask during data processing. As shown in
Table 3, the entire time consumption of our model lies in
the data processing procedure. For the computation cost of
the network, the inference time is almost the same as event-
to-video methods, as the only difference of the network be-
tween ours and events-to-video methods is the input chan-
nels of the first CNN layer. In addition, we find that the
SiLK costs more computation than SuperPoint as its back-
bone does not have a pooling operation.

D. Limitations
Despite the impressive performance of EI-Nexus in

event-image inter-modality local feature extraction and
matching, there remain several limitations that warrant fur-
ther investigation. First, The event representations explored
in this work are the only commonly used methods that con-
vert the event stream into 2D representations, which may
not fully capture the spatial-temporal information for inter-
modality local feature extraction and matching. Future re-
search could explore more expressive representation ap-

proaches, such as learning-based techniques, to improve the
robustness of the framework. Second, the intra-modality
performance of the learned event extractor is not investi-
gated. Although the whole EI-Nexus framework is designed
for inter-modality tasks, a unified framework for both intra-
modality and inter-modality local feature extraction and
matching is preferred in downstream applications. How-
ever, since EI-Nexus provides a simple, direct, and flexi-
ble approach to constructing the local feature relationship
of different modalities, it could be an indispensable part of
such a unified multi-modality framework. Third, the pro-
posed EI-Nexus solution is supposed to train on a specific
dataset, which limits its generalization ability. In this case,
further research on training on synthetic data is encouraged.
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