
PivotAlign: Improve Semi-Supervised Learning by Learning Intra-Class
Heterogeneity and Aligning with Pivots

Supplementary

Lingjie Yi1, Tao Sun1, Yikai Zhang2, Songzhu Zheng2, Weimin Lyu1, Haibin Ling1, Chao Chen1

1 Stony Brook University, 2 Morgan Stanley
{chris.yi, weimin.lyu, chao.chen.1}@stonybrook.edu,

{tao, hling}@cs.stonybrook.edu,
{yikai.zhang, songzhu.zheng}@morganstanley.com

Supplementary

A Distance Among Pivots

In Sec.1, we mention that maintaining intra-class het-
erogeneity of data requires the prevention of pivots from
shrinking together. Here, we visualize the distance matrix
between pivots (Fig. 1) to confirm that our method does
avoid the collapse of pivots throughout the training process.

It’s also seen that the distribution of pivots also exhibits
a hierarchical structure (also shown in Fig. 2e). So both
inter-class and intra-class heterogeneity of data are well-
maintained. These 30 pivots are learned with CIFAR-10
training images with 40 labeled data.

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 1.55

1.41

1.26

1.10

0.89

0.63

0.00

Figure 1. Distance Between 30 Learned Pivots

B Additional Visualization Results

In Sec.5.3, we have shown the detailed comparison be-
tween PivotAlign and a baseline model FixMatch through
t-SNE visualization. Here, we provide the complete version

of the visualization (Fig. 2). We also provide an additional
comparison between PivotAlign and a self-supervised learn-
ing based baseline model, CoMatch (Fig. 3).

Similar to Fig. 2, Fig. 3a shows that CoMatch only learns
inter-class heterogeneity of data. But, with the help of self-
supervised learning, CoMatch learns more compact repre-
sentations for each class and more separated decision bound-
aries, especially the boundary between class 3 and class
5 (Fig. 3b). Also, same with FixMatch, samples from the
same sub-class spread arbitrarily within the class-level clus-
ter while our model align samples together by sub-classes.

In Fig. 3, we provide further details about samples from
class 3 (Fig. 3c vs Fig. 3g) and class 5 (Fig. 3d vs Fig. 3h) that
are mis-classified by CoMatch but corrected by PivotAlign.
We can see that, via learning intra-class heterogeneity of
data, many samples that are difficult for baseline models to
learn are correctly grouped with more related neighboring
points by our model.

1

(a) FixMatch (b) FixMatch two-classes (c) FixMatch class 3 (d) FixMatch class 5

(e) PivotAlign (f) PivotAlign two-classes (g) PivotAlign class 3 (h) PivotAlign class 5

Figure 2. t-SNE visualization of CIFAR-10 training set. (a) and (e) show representations learned by FixMatch [2] and PivotAlign respectively.
Each color denotes one of the 10 distinct classes. Yellow dots denote learned pivots. Dashed boxes denote partial-view to be zoomed-in. (b)
and (f) are zoom-in-views of class 3 and class 5. These two classes are colored in blue and red in (a) and (f), but colored by six sub-clusters
(from light blue to dark blue, from light red to dark red) identified by PivotAlign. It can be seen that samples with similar intra-class semantic
information are dispersed randomly within the class-level cluster in (b) but are grouped together in (f). (c) and (g) are further isolated views
of class 3. ‘×’ denotes samples mislabeled by FixMatch but corrected by PivotAlign. (d) and (h) are isolated views of class 5.

(a) CoMatch (b) CoMatch two-classes (c) CoMatch class 3 (d) CoMatch class 5

(e) PivotAlign (f) PivotAlign two-classes (g) PivotAlign class 3 (h) PivotAlign class 5

Figure 3. t-SNE visualization of CIFAR-10 training set. (a) and (e) show representations learned by CoMatch [1] and PivotAlign respectively.
Each color denotes one of the 10 distinct classes. Yellow dots denote learned pivots. Dashed boxes denote partial-view to be zoomed-in. (b)
and (f) are zoom-in-views of class 3 and class 5. These two classes are colored in blue and red in (a) and (f), but colored by six sub-clusters
(from light blue to dark blue, from light red to dark red) identified by PivotAlign. It can be seen that samples with similar intra-class semantic
information are dispersed randomly within the class-level cluster in (b) but are grouped together in (f). (c) and (g) are further isolated views
of class 3. ‘×’ denotes samples mislabeled by CoMatch but corrected by PivotAlign. (d) and (h) are isolated views of class 5.

C Pseudo-code

In this section, we present pseudo-code of our model. In
Algorithm 1, we show the training pipeline of PivotAlign
within one mini-batch.

Algorithm 1 Pseudocode of PivotAlign

f: backbone encoder
g: projection MLP
l: prediction MLP
pivots: feature embeddings of pivots
p_labels: labels of pivots

MB contrains
z_m: feature embeddings in MB
pseudo_labels_m: pseudo_labels in MB
mask_m: confident samples mask in MB

for x, y, u in loader: # load a minibatch
x = aug_w(x) # random augmentation
u1, u2 = aug_w(x), aug_s(x)

px = l(f(x))
h1, h2 = f(u1), f(u2) # encoding, n-by-d
p1, p2 = l(h1), l(h2) # predictions, n-by-d
z1, z2 = g(h1), g(h2) # projections, n-by-d

z1 = normalize(z1, dim=1)
z2 = normalize(z2, dim=1)

with torch.no_grad():
calculate pseudo labels
probs = DA(softmax(p1, dim=-1))
Eq.14 and Eq.15
clusters = get_cluster_label(

z1, pivots, p_labels, MB
)
Eq.16
pred = alpha*probs + (1-alpha)*clusters
pseudo_labels, mask = get_label_mask(pred)

pivot assignments
Eq.7, Eq.8 and Eq.9
assign, assign_m = get_pivot_assignment(

pivots, p_labels,
z1, pseudo_labels, mask, MB

)

weight for contrastive loss
Eq.13
weight_c = get_contrast_weight(

assign, pseudo_labels, mask,
assign_m, p_labels, MB

)

calculate loss
Eq.1
lx = loss_x(px, y)
Eq.2
lu = loss_u(p2, pseudo_labels, mask)
Eq.11
lp = loss_p(pivots, z1, assign, mask)
Eq.12
lc = loss_c(z2, z_m, weight_c)
Eq.17
loss = calc_loss(lx, lu, lp, lc)

loss.backward() # back-propagate
update(f, l, g, pivots) # SGD update
update_MB(z1, pseudo_labels, mask) # Update MB

For key functions mentioned in Algorithm 1, we provide
an additional explanation about how we generate pivot as-
signments in Algorithm 2. We also provide pseudo-code
about how we generate cluster labels in Algorithm 3.

Algorithm 2 Pivot Assignments Generation

z: feature embeddings of input
mask: confident samples mask

def get_pivot_assignment(
pivots, p_labels,
z, pseudo_labels, mask,
MB

):
key numbers
num_pivots = pivots.shape[0]
num_conf = torch.where(mask)[0].shape[0]

feature
z_batch = z[mask]
z_bank = z_m[mask_m]
z_sample = torch.cat([z_batch, z_bank], 0)

pseudo label
pl_batch = pseudo_labels[mask]
pl_bank = pseudo_labels_m[mask_m]
pl_sample = torch.cat([pl_batch, pl_bank],0)

affinity
label_mask = pseudo_labels.reshape(-1, 1).eq(

p_labels.reshape(1, -1)
)
affinity = torch.mm(z_sample, pivots.t())
affinity = affinity * label_mask.float()

marginal distribution
column dist
c = torch.ones(num_pivots) / num_pivots
row dist
count = Counter(pseudo_labels)
count = [count[i] for i in range(num_classes)]
prob = np.array(

[1 / (num_classes * i) for i in count]
)
r = prob[pseudo_labels]

OT clustering
assign_all = sinkhorn(

-affinity_sample, r, c, epsilon
)
assign_all *= label_mask.float()
assign_all /= assign_all.sum(1, keepdim=True)

assign = assign_all[:num_conf]
assign_m = assign_all[num_conf:]

return assign, assign_m

Algorithm 3 Cluster Labels Generation

def get_cluster_label(z, pivots, p_labels, MB):
key numbers
num_feats = z.shape[0]

feature
z_sample = torch.cat([z, z_m], 0)

aggregated prob
sim = torch.mm(z_sample, pivots.t())
weight = torch.softmax(sim / temperature, dim=1)
prob_agg = torch.mm(

weight, F.one_hot(pivots_label, num_classes)
)

OT clustering
cluster = sinkhorn(

-prob_agg, epsilon=epsilon, exp=False
)
cluster = cluster[:num_feats]

return cluster

References
[1] Junnan Li, Caiming Xiong, and Steven C.H. Hoi. CoMatch:

Semi-supervised Learning with Contrastive Graph Regulariza-
tion. In ICCV, 2021. 2

[2] Kihyuk Sohn, David Berthelot, Chun Liang Li, Zizhao Zhang,
Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Han Zhang,
and Colin Raffel. FixMatch: Simplifying semi-supervised
learning with consistency and confidence. In NeurIPS, 2020. 2

