
EasyRet3D: Uncalibrated Multi-view Multi-Human 3D Reconstruction and
Tracking

A. Appendix Section
This appendix is organized as follows. In Section B,

we conduct ablation studies on different components of our
method. In Section C we provide more qualitative exam-
ples of our method. In Section D we present details on the
experiments on tracking and pose estimation. We provide
details on the optimization in Section E. Finally, we discuss
the limitations of our method in Section F.

B. Ablations
To validate the robustness of our proposed method, we

conducted ablation studies to discern the contribution of
variants in camera parameters and optimization to the ag-
gregate accuracy of our method.

B.1. Ablation study on Camera Parameters

Variant PA-MPJPE (mm) ↓
Average Stitching 27.4
Max Stitching 27.1
Adaptive Stitching (ours) 25.7
Adaptive Stitching (3 views) 26.8
Adaptive Stitching (2 views) 27.5
Single View (front) 30.1
Single View (back) 33.5

Table 1. Effect of number of camera views To investigate the
benefit of using more camera views, we evaluated the 3D pose
estimation performance of our method, in terms of PA-MPJPE,
with varying numbers of views on the test split of the Human3.6M
dataset. ↓ means the lower the better. We found that using more
camera views yields more accurate 3D pose estimation.

We first ablated on the number of cameras on the
Human3.6M dataset. As shown in Table 1, reducing the
number of cameras generally increases the 3D pose esti-
mation error (PA-MPJPE). Moreover, views that are more
prone to occlusions (e.g., back views) benefit greatly from
the aggregated information across different perspectives.
Our Adaptive Stitching approach, which incorporates the
confidence value of detected 2D keypoints from VitPose [7]
as weights for the weighted average, yields the best

PA-MPJPE of 25.7 (mm) under the maximum number of
views (V = 4). Therefore, having more camera views and
employing weighted average help to produce more accurate
3D reconstructions.

Adaptive 3D Human Stitching Module: After obtain-
ing the camera poses R̂, T̂ , we transform the SMPL pa-
rameters Pi,υ

t from each view’s local camera coordinates to
the global world coordinates. Due to occlusions or varying
camera angles, different views provide incomplete observa-
tions of the scene, making it challenging to recover all the
parameters for every individual. To address this, we develop
an adaptive stitching algorithm that fuses the SMPL param-
eters from all views by computing a weighted sum. The
weight assigned to each view is based on the confidence
score of 2D keypoints in that view, ensuring that views with
higher reliability contribute more to the final representation.
The aggregated SMPL parameters provide a unified global
model, improving 3D reconstruction even in cases of occlu-
sion or missing views.

In Table 2, we investigated the impact of ground-truth

Variant PA-MPJPE (mm)↓
Adaptive Stitching (2 views) 27.5
Adaptive Stitching (3 views) 26.8
Adaptive Stitching (ours) 25.7
Adaptive Stitching w/ GT 25.2

Table 2. Effectiveness of our auto-calibration techniques Aim-
ing to demonstrate the efficacy of our method in scenarios devoid
of manual calibration inputs, we compared the 3D pose estimation
results of our calibration-free method against our variant utilizing
ground-truth camera pose data on the test split of the Human3.6M
dataset.

(GT) camera pose information on the performance of 3D
pose estimation. Our approach (Adaptive Stitching) is a
calibration-free approach that utilizes an auto-calibration
procedure to approximate camera pose, whereas (Adaptive
Stitching w/ GT) incorporates the ground-truth camera pose
data directly into the model. The PA-MPJPE results demon-
strate a marginal difference between our calibration-free
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method and the ground-truth camera pose informed ver-
sion, with errors of 25.7 (mm) and 25.2 (mm) respectively.
This suggests that our auto-calibration process is highly ef-
fective, yielding 3D pose estimation results comparable to
the results obtained with the presence of ground-truth cam-
era poses. Such a result underscores the robustness of our
calibration-free method and its potential for practical appli-
cations where ground truth camera poses are unavailable or
difficult to obtain.

B.2. Ablation study on Optimization

Our method relies on iterative optimization to jointly op-
timize for SMPL parameters and camera intrinsic/extrinsic
after initializing multi-view people in the world. To investi-
gate the effect of each stage of our optimization on perfor-
mance, we perform ablation on the three iterative stages of
our optimization process, with results shown in table 3.

We find that stage 2 optimization contributes most sig-
nificantly to performance, and depending on the dataset,
stage 3 optimization may further improve or degrade the
performance. We hypothesize that the learned human mo-
tion prior ”over-corrects” and ”over-smoothens” the human
poses, especially for small movements of arms and heads.

C. Further Qualitative Results

In this section, we present supplementary qualitative re-
sults on camera pose estimation and multi-human 3D track-
ing under occlusion.

C.1. Camera Pose Estimation

In Figure 1, we show that our method gives an accurate
estimation of ground truth camera poses.

Figure 1. Qualitative results on camera pose estimation. The left
column visualizes the ground truth and our estimated camera poses
on the Shelf dataset, and the right column shows the ground truth
and our estimated camera poses on the Panoptic dataset. Results
indicate that our method can accurately estimate camera poses

C.2. Multi-human 3D Tracking

In Figure 2 and Figure 3, we showcase our method’s
tracking performance in severe & complete occlusion sce-
narios against our backbones.

D. Additional Experiments Details

D.1. Paralleling Motion Prior Optimization

Our intentional use of non-autoregressive motion prior
model allows to take advantage of parallel optimization,
which significantly improves the effiency of our global it-
erative optimization module. We divide a motion sequence
into overlapping segments, each with 120 frames, and in-
clude 24 overlapping frames to reduce discontinuities be-
tween segments. This approach of using overlapping win-
dows also enables the prior’s latent representation to model
a consistent length of motion. Because our motion prior op-
erates non-autoregressively, allowing us to optimize all seg-
ments simultaneously. We provide a run time comparison
between the state-of-the-art monocular view optimization
based method SLAHMR and our method in table 4. We ob-
serve a significant improvement compared to SLAHMR op-
timization time: EasyRet3D takes 10 minutes (1.667 fps) to
optimize 1000 frames, while SLAHMR [8] takes 260 min-
utes (0.06 fps), an 26x improvement in optimization speed.

D.2. Pose estimation evaluation details

D.2.1 PHALP track matching

For each frame within the evaluation subset, since the num-
ber of detected individuals ndetected might be larger than the
ground-truth number of individuals ngt (i.e., ndetected > ngt),
it is crucial that we iteratively compared the PHALP [5] 2D
keypoints against the ground-truth 2D keypoints to establish
the best match for each track ID, based on their spatial cor-
respondence. The keypoints matrices are structured as as
(N,T, J, 3), representing N individuals, T timestamps, J
joints, and 3 coordinates (x, y, confidence). For each indi-
vidual’s ground-truth keypoints we computed their encom-
passing bounding box and for each PHALP track’s key-
points, we filtered out any points with a zero confidence
value and obtained respective bounding boxes. To derive
the best matches, we calculated the Intersection over Union
(IoU) between each track’s bounding box and the ground-
truth bounding box. In this sense, we selected the track
with the highest IoU for each frame as the best match and
recorded its index. The output of this matching procedure is
a matrix with shape (Ntrack, T ) , where Ntrack is the number
of tracks and T is the number of frames. Each element in
this matrix represents the index of the ground-truth individ-
ual that best matches each track ID across the sequence of
frames.



Shelf Human3.6M

Variant A1 ↑ A2 ↑ A3 ↑ Avg. ↑ PA-MPJPE (mm) ↓ PA- MPJPE (mm) ↓
Stage 1 99.5 95.0 97.5 97.3 44.8 26.2
Stage 1,2 99.7 95.6 97.6 97.6 42.4 25.7
Stage 1,2,3 99.8 95.9 97.8 97.8 41.7 26.9

Table 3. Effect of Iterative Optimization Ablation three iterative stages of our optimization process. We report the 3D pose estimation
metric PA-MPJPE on the Shelf and Human3.6M datasets. ↑ means the larger the better, ↓ means the lower the better. The most critical
component for performance is the second stage of the optimization. We observe that the dataset impacts the performance of the optimization
process: notably, our full-system optimization (Stages 1, 2, and 3) did not yield an improvement in PA-MPJPE on the Human3.6M dataset.

Figure 2. Side-by-side qualitative evaluations of 3D pose tracking performance on the CMU Panoptic dataset [3]. The superior
consistency of our method is illustrated in the top rows of each scene, where the individual encased in the red bounding box consistently
retains their color designation, showcasing our method’s robust identity tracking over time. In contrast, the bottom rows, representing the
PHALP’ results, reveal the system’s vulnerability to occlusions, as highlighted by the individual in the orange bounding box receiving
varied color identities, indicating identity switches.

Methods Runtime per 1000 frames (fps) ↑
SLAHMR [8] 260 minutes (0.064)
EasyRet3D 10 minutes (1.667)

Table 4. Effect of number of camera views Total optimiza-
tion time (running time) of our methhod optimization module and
SLAHMR global optimization. We present this both as total run-
time per 1000 frames (minutes) and frames per second (fps).

D.2.2 Keypoint ordering conversion

The default 3D keypoint ordering of our method is in the
OpenPose-25 format, which needs to be converted to the

format compatible with the ground-truth keypoint ordering
in Table 5. As they are not specified in OpenPose-25, we es-
timated the Bottom Head and Top Head using the following
steps:

Mid Shoulder (MS) =
LShoulder + RShoulder

2

Mid Ear (ME) =
LEar + REar

2

Center Head (CH) =
Nose + ME

2

Bottom Head (BH) =
MS + CH

2
Top Head = BH + 2× (CH − BH)



Figure 3. Additional Qualitative results of the proposed approach. All input videos are from the panoptic dataset [3]. The columns
compare results from three methods: PHALP’ [2], SLAHMR [8], and EasyRet3D. The examples include different ranges of people (from
N = 1 to N = 6) in a given scene. The examples include unusual poses, unusual viewpoints, people in close interaction, and severe
occlusions. For each example we show the input image, the reconstruction overlay, a front view and a additional view. For our method
EasyRet3D, we also show the reconstruction overlay to another view.



Table 5. Comparison of OpenPose-25 and Shelf Dataset Keypoint
Ordering

Index OpenPose-25 Shelf Dataset

0 Nose RAnkle
1 Neck RKnee
2 RShoulder RHip
3 RElbow LHip
4 RWrist LKnee
5 LShoulder LAnkle
6 LElbow RWrist
7 LWrist RElbow
8 MidHip RShoulder
9 RHip LShoulder
10 RKnee LElbow
11 RAnkle LWrist
12 LHip Bottom Head
13 LKnee Top Head
14 LAnkle -
15 REye -
16 LEye -
17 REar -
18 LEar -
19 LBigToe -
20 LSmallToe -
21 LHeel -
22 RBigToe -
23 RSmallToe -
24 RHeel -

D.2.3 PA-MPJPE

We calculated PA-MPJPE for both Shelf and Human3.6M
datasets. With the matching matrices, we aligned the
matched predicted joints and ground-truth joints by per-
forming Procrustes Analysis to find the optimal scaling fac-
tor sPA, rotation matrix RPA, and translation matrix TPA.
After stacking the aligned point sets, we computed the per
joint position errors and calculated the mean to obtain PA-
MPJPE.

ei = ||Pi −Gi|| (1)

PA-MPJPE =
1

n

n∑
i=1

ei (2)

D.2.4 PCP3D

As the Shelf dataset contains complex scenes where interac-
tions between multiple individuals create severe occlusions,
we computed the PCP3D on this dataset using the matched
predicted joints and ground-truth joints. Let Pstart and Pend
be the start and end points of the predicted limb, and let
Gstart and Gend be the start and end points of the ground

truth limb. The limb is considered correctly estimated if the
following condition is met:

∥Pstart −Gstart∥2 + ∥Pend −Gend∥2
2

≤ α · ∥Gstart −Gend∥2,
(3)

where:

• ∥ · ∥2 denotes the Euclidean (L2) norm.

• α is the threshold ratio, typically set to 0.5.

This condition is checked for each limb to compute the
PCP3D score. We followed the bone group selection pro-
posed by [1]. Table 6 shows the specific PCP results for
each bone group, complementing Section 4.3.

Table 6. PCP scores for each bone group across actors

Bone Group Actor 1 Actor 2 Actor 3 Average

Head 100.0 100.0 99.8 99.9
Torso 100.0 100.0 100.0 100.0
Upper arms 99.6 99.5 100.0 99.7
Lower arms 99.3 83.8 87.6 90.2
Upper legs 100.0 100.0 100.0 100.0
Lower legs 100.0 100.0 100.0 100.0

Total 99.8 97.2 97.9 98.3

E. Additional Details on Optimization
In Section 3.5 of the main manuscript, we present an it-

erative optimization to jointly solve for SMPL parameters
{wPi

t} for a person i at timestamp t and camera extrinsic
and intrinsic {RCv

W , TCυ , fυ} for each view υ. Here, we
provide more details about the individual loss term in the
second stage (Lstage2) and third stage (Lstage3) of our opti-
mization. Recall the second stage of our loss function:

Lstage2 = λJ2DLJ2D +λβLβ +λΘLΘ +λsmoothLsmooth. (4)

The Lsmooth is a simple loss based on minimal kinetic
motion:

Lsmooth =
N∑
i=1

T∑
t=1

∥∥wJ i
t −

wJ i
t+1

∥∥2 . (5)

Recall the third stage of our loss function:

Lstage3 = λJ2DLJ2d+λβLβ+λΘLΘ+λmotionLmotion+λenvLenv.
(6)

The loss term Lmotion is introduced to better capture the
possible distribution of human motions. It’s made up of two



loss terms {Lcvae,Lstab}, which we draw from transition-
based motion prior HuMoR [6].

Through HuMoR, the probability of a trajectory se-
quence {s0, . . . , sT } is decomposed into the probabilities
of transitions between consecutive states, pθ(st|st−1), with
st being an enriched state representation. This state encom-
passes the SMPL pose parameters wP , in addition to extra
velocity and joint location predictions.

The transition likelihood pθ(st|st−1), captured within a
conditional variational autoencoder (cVAE) framework, is
given by:

pθ(st|st−1) =

∫
zt

pθ(zt|st−1)pθ(st|zt, st−1), (7)

where zt ∈ R48 is a latent variable that encodes the tran-
sition from st−1 to st. This latent variable is anchored by a
conditional prior pθ(zt|st−1), which is modeled as a Gaus-
sian distribution with a mean and variance that are functions
of st−1. Incorporating this prior, a loss term based on zt is
utilized:

Lcvae = −
N∑
i=1

T∑
t=1

logN (zt;µθ(st−1), σθ(st−1)). (8)

Additional stabilization losses Lstab are employed to en-
sure the physical validity and consistency of the predicted
velocity and joint location aspects of st with its pose pa-
rameters. For further details, consult rempe2021humor,
ye2023decoupling.

The loss term Lmotion is introduced to optimize the
ground plane g ∈ R3 in the scene. Likewise, it’s also made
up of two loss terms {Lskate,Lcon}. We use the HuMoR de-
coder to obtain the ground contact probability c(j) ∈ [0, 1]
for the joints wJ . A zero velocity prior is enforced on joints
likely to be in ground contact g, mitigating the foot-skate
effect:

Lskate =
N∑
i=1

T∑
t=1

J∑
j=1

cit(j)
∥∥wJ i

t(j)−
wJ i

t+1(j)
∥∥ . (9)

Simultaneously, a constraint is applied to keep their dis-
tance from the ground under a predetermined threshold δ:

Lcon =
N∑
i=1

T∑
t=1

J∑
j=1

cit(j)max(d(wJ i
t(j), g)− δ, 0), (10)

where d(p, g) is the distance between ground plane g and
points p ∈ R3.

We provide the hyperparameter settings used in our op-
timization in table 7. We implemented our optimization in
pytorch [4] with a lr of 1.

Stage Hyperparameter Value

Optimization

1 λJ2D 0.004

2
λβ 0.05
λθ 0.04
λsmooth 5

3

λcvae 0.075
λskate 100
λstab 0.075
λcon 10

Table 7. Hyperparameter configuration for different optimization
stages of Easy3DTrack-MV

F. Limitation
Our approach is by design modular. For instance, it

utilizes the advanced cross-view matching algorithm by
xu2022multi for automatic camera calibration; it uses the
single-view tracking and SMPL pose output from PHALP’
[2] for our stitching algorithm. However, it should be noted
that if any of these individual methods were to fail, it could
potentially propagate its failure to our final optimization
process.
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