
A. Annotation Guidelines
For the manual annotation process, we provided annota-

tors with a detailed set of guidelines to ensure consistency
in labeling persistent changes. Annotators were instructed
to focus on long-lasting changes that persisted for over a
year, disregarding short-term or seasonal variations. They
were given examples of desertification, urban expansion,
and forest loss, and asked to ignore temporary changes such
as crop rotations or seasonal foliage variations. If either an-
notator encountered uncertainties during the labeling pro-
cess, we would review the time series, discuss our observa-
tions, and reach a consensus. We found that inter-annotator
agreement was high, particularly in cases of clear, persistent
changes. Furthermore, as the dataset is fairly small, we ran-
domly sampled and double-checked each of the annotated
time series.

Initially, we manually annotated 300 images of size
512x512 pixels with binary labels indicating whether per-
sistent changes were present (1) or not (0). For images
labeled as 0 (no change), we made the assumption that
changes were uniformly absent throughout the image. As a
result, these images were split into 16 smaller patches, each
of size 128x128 pixels, and all patches were automatically
labeled 0. For images labeled as 1 (indicating changes), all
16 patches were individually annotated to capture the finer
details of the changes across smaller regions.

In addition to the manual annotation process, annota-
tors had access to longitude and latitude information for
each image, along with integrated Google Maps and Open-
StreetMap views within the annotation interface (shown in
Figure 5). This integration allowed them to cross-reference
geographical context, improving their ability to identify per-
sistent changes. For example, if annotators were unsure
about changes in an image, they could determine that the
area was in Australia and recognize that fires between cer-
tain months may have affected the region. This spatial con-
text greatly improved annotation accuracy for geographi-
cally complex or ambiguous cases.

B. Qualitative Examples and Model Compari-
son

The qualitative analysis of OPTIMUS, CaCo, and SeCo
reveals important distinctions in how these models han-
dle persistent and cyclic changes across diverse environ-
ments. OPTIMUS performs exceptionally well in detect-
ing long-term, persistent changes by leveraging the tem-
poral progression of images, allowing it to filter out short-
term, cyclic variations like crop rotations or seasonal shifts
in snow cover. As shown in Figure 6, OPTIMUS is effective
in identifying clear, non-reversible transformations, making
it suitable for both urban and natural environments where
such variations dominate.

Figure 5. The annotation interface used during the manual labeling
process. Annotators could navigate through time series images,
view specific months, and classify changes using a set of keyboard
shortcuts. Furthermore, they could adjust the number of images
they wanted to view at a time (i.e., 3 at a time instead of 1).

However, some failure cases highlight challenges for
OPTIMUS in distinguishing between significant and subtle
environmental shifts. In particular, regions like deserts or
areas with strong lighting changes or surface texture shifts
(e.g., sand dunes, shadows) can mislead the model, caus-
ing it to detect changes where none actually exist. These
failure cases suggest that while temporal progression helps
filter out short-term cyclic variations, certain natural phe-
nomena—such as reflective surfaces or temporary shad-
ows—can still trigger high change scores in OPTIMUS (see
Figure 7). Notably, SeCo and CaCo exhibit similar patterns
in these situations, as reflected in their segmentation masks.

CaCo also performs relatively well in rural environments
due to its seasonally invariant representations. However,
in our evaluation of both SeCo and CaCo, change scores
are calculated by dividing the detected change by the to-
tal number of pixels in the image. This pixel-wise normal-
ization makes them more effective in urban areas, where
changes like new buildings or roads are concentrated and
well-defined. In urban settings, larger and clearer change



maps make the pixel-wise division less problematic. How-
ever, in rural environments where changes are smaller and
more dispersed, this approach dilutes the change signal,
making both SeCo and CaCo less sensitive to subtle trans-
formations.

Many failure cases, as shown in Figure 7, occur in envi-
ronments where multiple change signals overlap—such as
urban expansion combined with cyclic agricultural changes.
In these cases, the models must distinguish between perma-
nent, meaningful changes and temporary cyclic phenomena.
OPTIMUS generally performs better while SeCo has a ten-
dency to output black change maps, indicating no detected
change when the signal is weak or dispersed.

C. Ablations

For all ablations, we report the area under the ROC curve
(AUROC), which is threshold-independent. Additionally,
we include the optimal F1 scores across all thresholds.

C.1. Backbones

We evaluated various backbones to determine their im-
pact on performance. The backbones tested include Resnet-
50, Resnet-152, and Swinbase-v2 [16]. For these tests, we
used Satlas [1] weights and a context size of three. Due to
the availability of Satlas weights, we were limited to these
three backbones.

Table 3. Testing different encoder backbones

Backbone F1 Score AUROC

Resnet-50 0.760 0.876
Resnet-152 0.730 0.850
SwinBase-v2 0.750 0.865

The AUROC performance was comparable across all
tested backbones, suggesting that the core strength of our
approach lies in the method of using change scores rather
than the specific backbone used. Therefore, we opted for
Resnet-50 due to its efficiency.

C.2. Weight initializations

We assess the effect of different weight initializations on
the Resnet-50 backbone with a context size of three. We
tested three initialization methods: Random, ImageNet [6]
[1], and Satlas weights, as shown in Table 4.

Table 4. Testing different initializations

Initialization F1 Score AUROC

Random 0.723 0.851
Imagenet 0.746 0.857
Satlas 0.760 0.876

We acknowledge that this is not a comprehensive abla-
tion analysis, as random and Imagenet weights were never
ideal for the specific task. The primary aim was to demon-
strate that using Satlas weights, which are pre-trained on
satellite images, improves performance compared to Ran-
dom and Imagenet weights.

C.3. Context sizes

For an ablation study, we evaluate the impact of context
size on the performance of OPTIMUS, as described in Sec-
tion 4, by varying context size from one to five. For each
configuration, OPTIMUS is retrained on the entire dataset
to adjust for the new input size.

Table 5. Testing different context sizes

Context size F1 Score AUROC

1 0.696 0.809
2 0.745 0.850
3 0.760 0.877
4 0.739 0.850
5 0.689 0.817

Table 5 presents the results of varying the context size.
A context size of three was optimal, which is the size used
for all other results in this paper. This is likely because three
images provide a balance between robustness and variance
in the temporal context given to the model. Performance
decreases with context fewer than three due to reduced ro-
bustness to outliers. Conversely, performance drops with
context more than three due to increased variability within
the set, which complicates predictions.

C.4. Change Measures

For an ablation study, we evaluate using two different
change measures, pivot score and Spearman coefficient. All
of these were done on the Resnet-50 backbone, with Satlas
weights, and with context size three.

Table 6. Testing different change measures

Measure F1 Score AUROC

Spearman 0.748 0.860
Pivot 0.760 0.877

Pivot scores were slightly more effective than the
Spearman coefficient in detecting progressive changes that
aligned with human annotations. This may be because hu-
mans are better at identifying abrupt changes, which the
pivot score captures more effectively.



Figure 6. Examples of successful predictions by OPTIMUS, with performance scores from CaCo and SeCo models across various envi-
ronments. The images are shown from left to right for the years 2016, 2018, 2020, 2021, and 2023, respectively, all captured in the month
of November. Each row corresponds to a specific time series, with labels indicating whether a persistent, non-cyclic change is present (1)
or absent (0).



Figure 7. Most failures occur in complex environments with both seasonal and urban changes, or in situations where visual artifacts (e.g.,
shadows, lighting changes) mislead the models. Note that row 6 is incorrectly labeled (it should be 0); this was identified earlier, and we
have since double-checked the evaluation dataset.
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