
Appendix

A. Details of the Fusion of 2D and 3D Features
The comparative performance of various fusion tech-

niques is delineated in Table A1. This comparison in-
cludes methods such as concatenation, LiDAR-guided
deformable-attention-based fusion [5] and LiDAR-camera
self-attention-based fusion [34]. Analysis of the results
in Table A1 reveals that while both deformable-attention-
based and LiDAR-camera self-attention-based fusion tech-
niques offer improvements in accuracy, they entail a signif-
icant increase in latency. Furthermore, these methods ex-
hibit heightened sensitivity to QAT: the accuracy decline in
both deformable-attention-based and LiDAR-camera self-
attention-based fusions is more pronounced compared to
the simpler concatenation approaches. Consequently, this
study adopts feature concatenation as the primary method
for multi-modality fusion.

B. Quantization of the 3D Branch
Algorithm 1 shows our quantization-aware training for

LiDAR-based 3D Object Detection. It begins by initializing
a pre-trained model and selecting a calibration subset from
the LiDAR dataset. Then it defines a range for the quanti-
zation parameters. In the next step, each layer of the model
undergoes calibration using a Max-min Calibrator, which
determines the range of weights and activations. Based on
these ranges, the quantization parameters for each layer are
initialized.

The algorithm proceeds to optimize these parameters
through a grid search, applying different sets of parameters
to the model and evaluating performance on the calibration
set to identify the best set. Once the optimal quantization
parameters are determined, they are applied across all lay-
ers of the model. The model then undergoes training on
the full dataset, involving standard procedures like forward
passes, backpropagation, and parameter updates. The final
output of the algorithm is a trained quantized model, tai-
lored to maintain high performance despite the constraints
imposed by quantization, and specifically optimized for the

Table A1. Comparation of different multi-modality feature fusion
approaches on nuScenes validation dataset.

Method mAP NDS FPS

Deformable-attention-based Fusion (32-bit) [5] 71.5 73.9 2.9
Self-attention-based Fusion (32-bit) [34] 71.8 74.2 1.2

Concatenation (32-bit) 70.9 73.4 4.4

Deformable-attention-based Fusion (8-bit) [5] 69.7 72.2 8.5
Self-attention-based Fusion (8-bit) [34] 69.9 72.5 6.2

Concatenation (8-bit) 69.4 71.9 13.2

Algorithm 1 Quantization Aware Training for Q-
TempFusion
Given 3D LiDAR Point Cloud Dataset D, Model M ; Out-
put: Quantized Model Mquantized;
// Step1: Initialize Model M, GridSearchSpace,

CalibrationSet ⊆ D

foreach layer in M do
Determine WeightRange and ActivationRange us-

ing Max-min Calibrator; Initialize quantization param-
eters;

end
// Step2: Optimize Quantization Parameters

foreach param in GridSearchSpace do
Apply param, Evaluate M on CalibrationSet; Up-

date parambest if performance improves;
end
// Step3: Apply Best Parameters

foreach layer in M do
Apply parambest;

end
// Step4: Train Quantized Model

foreach epoch do
foreach batch in D do

Forward pass, Backpropagate, Update M ;
end

end
Mquantized ←M ; Return Mquantized;

nuances of LiDAR data.

C. Outlier-aware training for systematic
channel-wise outliers quantization

The algorithm of outlier-aware training is divided into
three steps, see Algorithm 2.

D. Baselines for the Experiments
In this paper, we conduct a comprehensive compari-

son of our method against a majority of the leading multi-
modality baseline detection models. In our comparative
analysis, camera-only methods and some of LiDAR-only
methods are not included. This exclusion is based on the
established understanding that such methods generally yield
lower accuracy compared to multi-modality models. Also,
it is pertinent to note that our comparative analysis excludes
[5] due to the fairness issue in comparison. The methodol-
ogy in [5] builds upon [36] and employs specific data aug-
mentation techniques on the nuScenes dataset, which are
not utilized in other detection baseline models. This dis-
crepancy in data handling practices potentially skews a di-
rect comparison. Therefore, for [36], we present its results
prior to the application of data augmentation in Table 1. Ad-
ditionally, it is noteworthy that the latency results reported



Algorithm 2 Outlier-Aware Training
Given the full-precision ViT Model, the test subdataset of target

Dataset D, the number of encoder blocks L, Epochs for
searching, Epochf for fine-tuning, and quantized low-bit b;
// Step1: Initialize the PTC r with the outlier

estimated from the full-precision Model.

foreach l ∈ [0, 1, . . . , L− 1] do
io, ro = Check Outliers3σ(Modell, D) Quantize Modell by

Eq. (2) with io, ro, b into the QModell;
end
// Step2: Search for the channel index of outliers and

determine the PTR r by the l2 regularization.

r = ro, i=io;
foreach eps ∈ [0, 1, . . . , Epochs − 1] do
// These two operations are gradient-free.

i, r = Check Outliers3σ(Modell); ri = argmin
ri∈{1,2,...,R}

||Xi −

⌊ Xi
2ris

⌉ · 2ris||2 ;
// Following Eq. (4) and Eq. (2).

taskloss, quantizationloss = Quantize(QModel, b);
Backward(taskloss, quantizationloss)

end
// Step3: Finetune the b-bit quantizaton.

Fix r and i for outliers and quantize QModel with fine-tune
Epochf ;
Finalize the quantized ViT Model.

in [62] exhibit slight discrepancies when compared to our
experimental findings. Consequently, the results presented
in this paper are based on our own experimental evaluations.


