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Appendix

In this appendix, we provide additional details omit-
ted from the main manuscript due to the limited space.
First, we present additional figures to underscore the mo-
tivation behind our proposed method (Appendix A). Then
we present more implementation details on fine-tuning Dif-
fusion Model [6] and training 3DGS [3] (Appendix B). We
also explore the influence of the Diffusion Model’s prior
on the generated results through dedicated experiment (Ap-
pendix C). Finally, we showcase more rendering results on
the KITTI [2] and KITTI-360 [4] datasets (Appendix D).

A. Motivation

Novel View Synthesis (NVS) for autonomous driving
scenarios is a challenging task. The ideal training images
for both NeRF [5] and 3DGS [3] should encompass all pos-
sible perspectives of the scene, which exhibit considerable
disparities with the data collected by moving vehicles. The
viewpoints offered by a vehicle-mounted camera are quite
constrained. Take the white car in Fig. 7 as an example, it is
only observed from its side rear in the training view, caus-
ing the rendering model to overfit these viewpoints. While
the current approach, such as Zip-NeRF [1], is able to ren-
der the vehicle clearly from a test view close to the training
view, it produces unsatisfactory artifacts and deformation
when the rendering viewpoint is shifted by a certain dis-
tance and rotated by a certain angle.

(a) Training Views

Test View Novel View
(b) Zip-NeRF (c) Ours

Test View Novel View

Figure 7. An example of how the current method [1] overfits the
training views, while our method overcomes this problem.

B. More Implementation Details

Diffusion Model. Our Diffusion Model is adapted from
Stable Diffusion 1.5 [6] and is fine-tuned on about 12,000
images with 512 × 512 resolution from the KITTI-360 [4]
dataset. Considering the original size of KITTI-360 images
is 1408× 376, a preliminary cropping step to 600× 376 is
performed before the resizing, to avoid over-distorting the
images. We conduct center-crop on the training images. For
the reference images, we use random-crop during the train-
ing process, which could ensure a certain perspective gap
exists between the reference image and the training image,
so as to enhance the robustness of the model. During infer-
ence, the reference images are pre-processed with center-
crop.

When selecting the reference images, we randomly
choose one image from the five frames preceding the train-
ing image and one from the five frames succeeding the
training image separately. During inference for the novel
viewpoint, we identify its closest training viewpoint and uti-
lize its adjacent frames as reference images. Regarding the
depth maps, due to the limitation of LiDAR point clouds in
capturing the scene above a certain height, we apply a mask
to the top 80 rows of pixels in the images. In practice, we
found that the inpainting capability of the Stable Diffusion
Model is effectively able to complete this portion of con-
tent. To enable classifier-free guidance in the first training
stage, we set both text prompts and reference images to be
empty with a 10% probability.

3D Gaussian Splatting. We only initialize the 3D Gaus-
sian models with LiDAR point cloud. The detailed proce-
dure involves first projecting the LiDAR frame onto its cor-
responding image frame to assign a color to each LiDAR
point. Then these points are re-projected into 3D space, cre-
ating colored 3D point clouds. Finally, all frames of point
clouds are accumulated and then voxel-downsampled with
the voxel-size of 5. We train both our model and the base-
line 3DGS model for 50,000 iterations. We first train the
model for 500 iterations without sampling pseudo views for
adequate warm-up. Subsequently, for every 10 iterations, 4
pseudo views are sampled for training.
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Figure 8. The impact of the strength of the Diffusion Model’s prior on the generated result. *(c) is a novel view, its original image is
rendered by 3DGS.

C. Additional Experiment

Additional Ablation Study. As described in Sec. 3.2 of
the main manuscript, during the training stage of 3DGS,
we render some randomly sampled pseudo views, and uti-
lize a fine-tuned Diffusion Model to generate guidance im-
ages for these views to regularize the training. Specifically,
the pseudo view rendered by 3DGS is passed through the
VAE Encoder to obtain a latent feature map, to which noise
at level t is added, where t ∼ [tmin, tmax]. This noised la-
tent feature is denoised by the Diffusion model from level
t to tmin, and then it is decoded to obtain the generated im-
age. Specifically, we set tmax = 10, and employ a hyper-
parameter s, which indicates strength, to control the noise
level t, according to t = s× tmax.

In Fig. 8, we show the results of ablation experiments
on hyper-parameter s. The first column labeled with orig-
inal image refers to the image being fed into the Diffusion
Model, while the generated image with hyper-parameter s
increasing from 0.2 to 0.8 is exhibited in the other columns.
It can be observed that a smaller s makes generated images
more similar to the original image, while a large s intro-
duces higher diversity and deviation in details. For novel
viewpoints in Fig. 8 (c), smaller s makes the generated im-
age preserve noise rendered by 3DGS. As s increases, the
image becomes cleaner but loses some details. In prac-
tice, we randomly select s ∼ [smin, smax] for each sampled
pseudo view, where smin = 0.2, smax starts at 0.6 and de-
creases to 0.4 over the training process. This strategy guar-
antees when 3DGS-rendered images are of lower quality in
the early stage of training, our model relies more on the
guidance from the Diffusion Model’s prior. Accompanied
by the quality of 3DGS renderings improves with ongoing
training, it is necessary to reduce the impact of the Diffusion

Model-generated images on the details.

KITTI 0009-10%

PSNR↑ SSIM↑ LPIPS↓

Street Gaussians [7] 17.99 0.700 0.195
Ours w/ Street Gaussians 19.01 0.754 0.174

Table 5. Quantitative results on KITTI dataset with sparse view
input.

Street Gaussians OursGT

Figure 9. Qualitative results on KITTI 0009 sequence with sparse
view input.

Additional Experiments with Sparse View Input. We
have added more experiments to demonstrate the effective-
ness of our method under sparse view inputs. Fig. 9 and
Tab. 5 show the qualitative and quantitative results with only
10% input for one sequence in KITTI. It can be observed
that when the input views are very sparse, our method pro-
duces fewer artifacts compared to Street Gaussians [7]. This
is because our fine-tuned Diffusion Model, can generate im-
ages that are highly faithful to the original scene given the



reference image and LiDAR depth. When the number of
input views decreases, increasing the number of sampled
pseudo views allows the training process to rely more on
the priors of the Diffusion model. However, this comes with
certain trade-offs, for example, in the second row of Fig. 9,
the billboard in the top right becomes blurry as the Diffu-
sion Model is less sensitive to text.

D. More Rendering Results
We provide more novel view rendering results of our

method and our competitors [1, 3] on the KITTI [2] and
KITTI-360 [4] datasets in Fig. 10.
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Figure 10. More qualitative results of novel views rendering on KITTI [2] and KITTI-360 [4].
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