SensorFlow: Sensor and Image Fused Video Stabilization
Supplementary Material

This supplementary material consists of four parts. In
Sec. 1, we show a complete quantitative metric compari-
son for each category in Shi et al. [0] test set. In Sec. 2,
we discuss the advantage of angular velocity based pre-
stabilization and compare the camera motion with quater-
nion based stabilization in the existing sensor-image fusion
based method Shi et al. [6]. In Sec. 3, we provide de-
tailed network structure shown in Fig. 3 of the main pa-
per. Finally in Sec. 4, we compare our method with indus-
try leading video stabilization solution in iPhone 15 Pro.
We encourage readers to watch our supplementary video at
https://youtu.be/f8gi53KMPYY.

1. Complete Quantitative Comparison

Table 1 shows complete comparison of the stability met-
ric. Note that since the Driving category only contains 2
videos and potentially introduces large variance, we merge
it with the original Parallax category. Since our method
combines the power of sensor-based stabilization and flow-
based stabilization, we achieve outstanding stability for all
categories. Our method especially works well with large
motion videos (e.g. Running category, +18.7% compared
to second best method), which proves the effectiveness of
our angular velocity based pre-stabilization with sensor in-
formation. Methods using optical flow for motion estima-
tion and dense warp field for stable frame generation are
typically sensitive to disocclusion (e.g. Parallax category,
+19.6% compared to second best method) and dynamic ob-
jects (e.g. People category, +8.7% compared to the sec-
ond best method). With flow pre-processing and occlusion-
aware flow stabilization network, the high performance of
our method remains unaffected in the presence of parallax
and moving objects.

Table 2 shows complete comparison of the distortion
metric. As discussed in the main paper, our method has
a comparable distortion performance with the best method
PWStableNet [ | 1], but our method is significantly more sta-
ble. Note that for the challenging cases with large motion
(e.g. Running), our method is able to achieve more sta-
ble video (+21.6%) with comparable distortion (—4.7%) to
DUT [8].

Table 3 shows complete comparison of the cropping met-

Metrics General | Rotation | Parallax | People | Running | Average
Input 0.4003 | 0.2756 | 0.2587 |0.3453 | 0.2003 | 0.2906
Zhang et al. [10] 0.3218 | 0.1012 | 0.1721 [0.2795| 0.0962 | 0.1980
DUT [¢] 0.4711 | 0.3756 | 0.3929 |0.6587 | 0.4169 | 0.4694
Yu et al. [9] 0.4189 | 0.3341 | 0.2981 [0.5339 | 0.3313 | 0.3778
PWStableNet [11] 0.4139 | 0.3333 | 0.3034 [0.4132| 0.2183 | 0.3280
Wang et al. [7] 0.3503 | 0.1594 | 0.2113 [0.2501 | 0.2015 | 0.2371
Deep3D [4] 0.5665 | 0.3695 | 0.3547 [ 0.5861 | 0.3754 | 0.4413
Choi et al. [?] 0.4742 | 0.4133 | 0.3296 |0.4905| 0.2125 | 0.3692
Grundmann et al. [3] | 0.2739 | 0.2093 | 0.2229 [0.3642 | 0.2013 | 0.2560
Shi et al. [6] 0.3285 | 0.2708 | 0.3866 |0.5849 | 0.4272 | 0.4286
Ours 0.5409 | 0.3736 | 0.4701 |0.7162| 0.5069 | 0.5398

Table 1. Stability metric. Larger number indicates a better perfor-
mance. Best entry is marked with red, and second best is marked
with blue.

Metrics General | Rotation | Parallax | People | Running | Average
Input 1.0000 | 1.0000 | 1.0000 |1.0000 | 1.0000 | 1.0000
Zhang et al. [10] 0.9558 | 0.7644 | 0.6383 |0.7236 | 0.6277 | 0.7051
DUT [¢] 0.9354 | 0.9283 | 0.7607 |0.8704 | 0.8987 | 0.8457
Yu et al. [9] 0.9659 | 0.9110 | 0.7233 [ 0.8299 | 0.7328 | 0.7905
PWStableNet [11] 0.9735 | 0.9620 | 0.8978 |0.9025 | 0.8415 | 0.8993
Wang et al. [7] 0.8204 | 0.8723 | 0.6469 |0.7512| 0.5069 | 0.6745
Deep3D [4] 0.9609 | 0.8600 | 0.7967 |0.8399 | 0.6685 | 0.8066
Choi et al. [?] 0.9790 | 0.9560 | 0.7064 |0.8349 | 0.7439 | 0.7931
Grundmann et al. [3] | 0.9088 | 0.9000 | 0.8270 |0.8602 | 0.7886 | 0.8418
Shi et al. [6] 0.9574 | 0.9027 | 0.8211 |0.8414 | 0.7414 | 0.8298
Ours 0.9564 | 0.9219 | 0.8282 [0.8982 | 0.8561 | 0.8708

Table 2. Distortion metric. Larger number indicates a better per-
formance. Best entry is marked with red, and second best is
marked with blue.

Metrics General | Rotation | Parallax | People | Running | Average
Input 1.0000 | 1.0000 | 1.0000 |1.0000| 1.0000 | 1.0000
Zhang et al. [10] 0.9060 | 0.7405 | 0.6809 |0.6709 | 0.6091 | 0.6989
DUT [8] 0.9394 | 0.8368 | 0.7431 | 0.8678 | 0.7242 | 0.7986
Yu et al. [9] 0.9804 | 0.8789 | 0.8671 |0.8639 | 0.8020 | 0.8680
PWStableNet [11] 0.9314 | 0.8704 | 0.8423 [ 0.8900 | 0.7571 | 0.8458
Wang et al. [7] 0.7818 | 0.6794 | 0.7196 |0.7154 | 0.6801 | 0.7185
Deep3D [4] 0.9916 | 0.8787 | 0.8144 [0.9025| 0.7946 | 0.8563
Choi et al. [2] 1.0000 | 1.0000 | 1.0000 | 1.0000| 1.0000 | 1.0000
Grundmann et al. [3] | 0.7918 | 0.7807 | 0.7396 [0.7519| 0.7079 | 0.7454
Shi et al. [0] 0.8316 | 0.7364 | 0.7174 |0.7285| 0.5863 | 0.7081
Ours 0.9017 | 0.8110 | 0.8501 |0.8497 | 0.7458 | 0.8332

Table 3. Cropping metric. Larger number indicates a better perfor-
mance. Best entry is marked with red, and second best is marked
with blue.

ric. Note that although our method does not focus on main-
taining large field of view, the remaining region after the
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Figure 1. Camera rotation comparison between our angular velocity based pre-stabilization and the quaternion based method Shi et al. [0].

stabilization cropping is still reasonable. Compared to the
best method Yu et al. [9], our cropping metric is compara-
ble (—4.0%) and this regression is usually unnoticeable in
human eye, as shown in the user study.

Other methods with sensor-based pre-stabilization.
With our sensor-based pre-stabilization, other methods may
achieve better results in the static scenes. However, as
shown in Fig. 5 in the main paper, the most challenging part
of video stabilization methods is handling dynamic scenes.
Therefore, even with sensor-based pre-stabilization, other
method will not achieve comparable results to our method.
To support this claim, we select DUT [&] (the most stable
method other than ours) and use it to stabilize the Shi et
al. [6] dataset processed with our pre-stabilization. This
setup achieves 0.4756 in stability, 0.7909 in distortion and
0.6781 in cropping. Note that the stability is improved

slightly as expected, but the distortion is still worse due to
failure dynamic object handling, and overall it is —11.9%,
—9.2% and —18.6% inferior than our complete pipeline re-
sult.

2. Ablation on Angular Velocity based Pre-
stabilization

Fig. 1 shows comparison of the camera motion between
our angular velocity based pre-stabilization and the quater-
nion based optimization in Shi et al. [6]. In this figure, x-
axis is the frame index and y-axis is the angular velocity
along each 3D direction in radians per second; our angular
velocity curve is shown in red, and Shi et al. [6] is shown in
green. Note that the smaller the magnitude of angular veloc-
ity is, the more stable the video is; the smoother the angular
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Figure 2. Network structure details and parameters.
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Figure 3. Motion loss comparison between 2D CNN and 3D CNN.

velocity curve is, the less jitters remains in the result video.
Our method constraints smoothness directly in the veloc-
ity domain, and thus is fps invariant. The quaternion based
smoothness in Shi et al. [6] assumes a fixed fps, which is
not always true in practice due to sensor fps scheduling and
exposure change in the input. Therefore, in Fig. 1 we can
observe that our angular velocity based pre-stabilization re-
sults in both smaller angular velocity and acceleration. Our
camera path is smoother in general and less affected by the
frame gaps.

3. Network Structure Details

In Fig. 2, we show the detailed network structures of our
flow stabilization network. We categorize the 3D convo-
lutional blocks into 6 types, each is marked with different
color. On the right of Fig. 2, we list the structure and de-
tailed parameters used in our experiment. Note that the first
Type 1 block takes the stacked optical flow fields (with size
9 X h X w x 4) as its input, but instead of using 4 as c¢;,,
we use ¢;;, = ¢/2 for this block. We observe that the per-
formance of the flow stabilization network is not sensitive
to the value of c larger than 32, therefore we use ¢ = 32 in
all of our experiments.

Network structure discussion. We select 3D CNN as the

structure of the stabilization network, instead of 2D CNN
like Yu et al. [9]. The design principle is that video stabi-
lization is a spatial-temporal process: we need to smooth
the pixel tracks provided by the optical flow, while consid-
ering the rigidity of their neighborhood. To this end, 3D
CNN is a more intuitive structure to directly learn temporal
filtering, compared to 2D CNN that treat temporal dimen-
sion as channels and ignored the sequential information. We
show the training loss comparison in Fig. 3, where 3D CNN
achieves around 30% lower motion loss with around 5x less
network parameters compared to 2D CNN.

4. Comparison with iPhone 15 Pro

To demonstrate the effectiveness of our method, we also
compare our result and the industry leading video stabiliza-
tion solution [1] in iPhone 15 Pro. To capture examples for
comparison, we mount a Google Pixel 8 Pro and an iPhone
15 Pro on the same tripod side-by-side, where the former
one is used to record sensor/image data for our method.
Fig. 4 shows our results and the iPhone’s results in two
example scenes. In this figure, we consider the video se-
quence as a spatial-temporal volume. The images shown on
the right of each example are the vertical center slice of this
volume similar to the visualization in Liu et al. [5]. Note
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Figure 4. Comparison with industry leading video stabilization solution in iPhone 15 Pro. Vertical center slice are shown on the right of
each example. Red curve marks the trajectory of a small region in the video. Our result has significantly less jitters due to learning based
flow stabilization.

that the shakes in the video will be reflected by local de-
formation in the slice. In Fig. 4, we mark the trajectory of
a small region with red curve. It can be observed that the
curve for iPhone has many local deformations. Each defor-
mation represents a jitter in the video. Our result achieves
more stable results with less jitters compared to iPhone 15
Pro’s stabilization results. For better visual comparison, we
encourage reader to watch our supplementary video.
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