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These supplementary materials provide detailed de-
scriptions of the Few-Shot Segmentation (FSS) archi-
tectures for both the baseline and the proposed net-
works. Additionally, they include the ablation studies
mentioned in the main text.

A. FSS Baseline Architecture

The architecture of the baseline is depicted in Fig. 1,
featuring a meta-learner, a base learner, and an en-
semble module. The base learner, PSPNet [15] with a
ResNet-50/101 [5] backbone, is trained in a supervised
manner on base classes that are already known, yield-
ing the prediction FBase from the query set. Its role is
to predict regions of base classes in query images and
suppress falsely activated regions of base categories in
the meta learner output. The base learner trains the
encoder to extract essential features from support and
query sets, enabling the meta learner to focus on dis-
cerning relationships between these features.

The meta-learner leverages intermediate- and high-

level features from the support and query sets to gen-
erate five key features to evaluate their relationship.
All generated features are concatenated and processed
through an atrous spatial pyramid pooling (ASPP)
module [2], followed by a decoder to produce a binary
meta prediction mask FMeta.

The ensemble module (Fig. 2) integrates these two
predictions to produce the final foreground and back-
ground probability maps, culminating in the genera-
tion of Ffinal. It initially estimates the scene differences
between query-support image pairs by calculating the
Gram matrices of the support and query images using
low-level features F low

S ,F low
Q ∈ RC×Hl×Wl extracted

from the shared encoder blocks during the training of
the meta learner, where C, Hl, and Wl are the dimen-
sions of the low-level features. The Gram matrices are
calculated as follows:

GS = RSR
T
S ∈ RC×C (1)

GQ = RQR
T
Q ∈ RC×C (2)

Figure 1. Illustration of the architecture of our baseline (MSANet) [7].



where RS and RQ are reshaped tensors of F low
S and

F low
Q , which have dimensions C × N (with N =

Hl×Wl). The Frobenius norm is then computed on the
difference between these Gram matrices to derive the
adjustment factor map, which guides the adjustment
process as calculated:

Fψ = Reshape(∥GS −GQ∥F ) ∈ RHp×Wp (3)

where ∥ · ∥F indicates the Frobenius norm, and
Reshape is a function reshaping the input tensor to
the size of Hp ×Wp, which are the dimensions of the
meta and base predictions.

In the adjustment process, the foreground and back-
ground of the meta prediction are separately concate-
nated with the adjustment factor map, followed by a
1× 1 convolutional layer, yielding Ffg final and Fbg ψ.
Afterward, in the ensemble process, the base predic-
tion map from the base learner and the adjusted back-
ground map Fbg ψ are ensembled through concatena-
tion and a convolutional layer, yielding Fbg final . Fi-
nally, the final prediction map Ffinal is obtained by
concatenating Ffg final and Fbg final .

Figure 2. Illustration of a standard ensemble module.

B. Proposed Overall Architecture with Auxiliary
Information

In the proposed methods, depicted in Fig. 3, two
identical meta-learners, one for each domain, gener-
ate meta predictions F IR

Meta and FRGB
Meta respectively, uti-

Figure 3. The overall architecture of the proposed methods



Data Model
ResNet-50 ResNet-101

1-shot 5-shot 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Fold-3 MIoU FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 MIoU FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 MIoU FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 MIoU FB-IoU

SODA [9]

PFENet [13] 32.10 24.50 32.10 32.75 30.36 55.00 37.71 28.16 44.24 39.83 37.49 61.30 35.16 26.78 45.38 38.71 36.51 58.72 41.74 33.39 59.45 49.04 45.91 66.63
HSNet [10] 33.74 23.97 33.74 35.24 31.67 58.43 40.77 29.79 51.03 41.31 40.73 64.25 36.06 26.07 40.50 40.12 35.69 60.69 43.17 33.84 55.12 47.83 44.99 66.50

BAM [8] 38.65 35.32 42.80 49.47 41.56 65.94 43.89 39.54 52.42 61.73 49.40 71.77 39.21 36.51 51.98 53.77 45.37 68.26 46.85 40.63 59.28 61.45 52.05 73.68
VAT [6] 35.40 26.65 38.88 35.12 34.01 59.58 40.51 31.68 48.51 43.12 40.95 63.39 36.63 30.18 45.89 38.71 37.85 62.33 42.97 36.27 56.50 47.86 45.90 67.20

MSANet [7] 43.58 37.35 47.45 55.34 45.93 70.15 48.15 42.00 61.23 59.39 52.69 74.44 42.39 38.73 53.59 58.11 48.20 70.72 48.20 42.72 64.34 63.88 54.78 75.18
MSI [11] 32.32 24.98 42.19 37.82 34.33 59.22 37.07 29.68 51.03 45.28 40.76 62.75 31.29 28.60 46.65 40.78 36.83 61.50 36.91 34.17 54.09 48.58 43.44 65.57

Ours (Method3) 44.01 38.48 50.60 61.19 48.57 71.81 50.92 42.79 60.09 65.36 54.79 75.98 45.38 38.04 52.51 60.90 49.21 72.21 51.96 42.50 65.64 65.74 56.46 76.14

SCUTSEG [14]

PFENet [13] 47.15 21.76 38.44 6.74 28.52 63.52 48.43 25.65 40.92 7.51 30.63 65.68 49.16 26.42 37.52 12.75 31.46 65.06 53.75 33.71 39.63 23.39 37.62 67.37
HSNet [10] 36.72 20.65 27.47 14.98 24.95 61.30 42.24 26.88 32.60 18.01 29.93 64.62 38.46 20.99 28.34 8.66 24.11 61.38 45.07 27.47 34.37 14.24 30.29 64.71

BAM [8] 47.48 25.49 44.73 1.96 29.92 65.93 50.72 30.84 45.99 5.16 33.18 67.91 50.47 29.61 40.30 9.47 32.46 65.35 52.65 38.72 44.14 27.53 40.76 69.04
VAT [6] 37.28 22.18 34.14 10.2 26.13 61.36 44.54 27.83 36.87 12.45 30.42 63.67 39.11 24.72 33.04 13.55 27.61 62.55 44.44 30.54 38.80 18.56 33.08 65.12

MSANet [7] 48.35 27.29 46.51 3.97 31.53 66.68 51.69 35.46 48.53 13.20 37.22 68.68 50.38 30.18 44.68 11.83 34.27 66.96 52.48 39.26 47.18 21.75 40.17 68.49
MSI [11] 39.16 25.15 32.54 7.39 26.06 62.54 43.35 28.27 34.44 7.22 28.32 63.93 40.72 25.40 28.53 7.69 25.59 62.03 44.50 28.78 30.61 6.31 27.55 63.61

Ours (Method3) 55.44 34.30 55.09 16.51 40.33 70.48 57.46 41.75 54.29 28.00 45.38 72.43 62.36 37.11 52.91 14.45 41.71 71.14 66.49 46.83 56.03 25.90 48.81 73.62

Table 1. Comparison with SOTA methods on the SODA and SCUTSEG datasets under 1-shot and 5-shot settings, using
ResNet-50 and ResNet-101 backbone networks. Entries in bold indicate the best performance, while those underlined denote
the second best.

lizing shared encoder, ASPP, and decoder modules.
A shared base learner produces predictions F IR

Base and
FRGB

Base .
The proposed IR-RGB fusion ensemble module

comprises two identical ensemble modules for each
domain. Each ensemble module integrates the meta
prediction and base prediction with their own adjust-
ment factor map. The ensembled foreground predic-
tion maps from the IR and RGB domains are then
merged with 1 × 1 convolutional layers, following
the same process for background predictions. The
proposed fusion ensemble module complements re-
sults from each domain to produce the final fore-

Figure 4. The results of I2I translations using SynDiff. The
first three rows display samples from the SODA dataset,
while the fourth row onwards exhibits samples from the
SCUTSEG dataset.

ground/background probability maps and Ffinal.

C. Qualitative Evaluation of the Adversarial Gen-
erative Diffusion Models

We demonstrate qualitative results of the gener-
ated lightness and RGB images on two different IR
datasets, showcasing the effectiveness of our approach
in generating realistic and visually appealing results.
Generated Lightness Data for Data Augmentation.
The second column in Fig. 4 presents examples of gen-
erated lightness domain images IRL. These images
exhibit enhanced contrast compared to the original IR
datasets, retaining the essential properties and charac-
teristics. IRL images provide valuable data augmen-
tation, adding diversity and variations to the training
data without extra annotations.
Generated RGB Data for Auxiliary Information.
The third and fourth columns in Fig. 4 depict gen-
erated RGB images. The IR and IRL are converted
into RGBIR and RGBL, which enrich the channel in-
formation. While certain categories like trees, skies,
and roads translate clearly, others like cars may lack
clear color distinction. Despite potential color ambi-
guities, these images maintain distinct object contours
and contain valuable channel information.

Note that our fusion model is designed to dis-
till information from synthetic RGB images to im-
prove segmentation, even if the synthetic images are
not highly realistic as in conventional image-to-image
(I2I) translation problems. Thus, the goodness of the
synthetic RGB images is not critical to our develop-
ments, and as such was not a focus. In addition, the
goodness of the synthetic RGB images may be evalu-
ated by using RGB-IR segmentation methods designed



for paired data by substituting true RGB with synthe-
sized RGB data. However, this approach was not pur-
sued due to the scarcity of RGB-T datasets with an-
notations suitable for FSS settings. Although some
datasets containing RGB-T pairs with labels do ex-
ist (e.g., PST900 [12]), they are not suitable for FSS
tasks as they contain only four categories. While
Multi-Spectral-4i, derived from the MFNet [4] RGB-T
dataset, has been utilized for FSS tasks [1,16], we were
unable to leverage it due to the unavailability of pub-
licly released code. Furthermore, since our datasets do
not contain true IR-RGB pairs, both evaluations were
not possible.

D. Detailed Comparison with SOTA Methods.

Implementation Details. SOTA models were origi-
nally designed for RGB datasets and utilize pre-trained
backbone networks on ImageNet [3]. For a fair com-
parison, all models were implemented using the same
backbone networks, ResNet-50 and ResNet-101, pre-
trained on our IR datasets following the same train-
ing protocol as the encoder of the base learner [8].
Consistent training augmentation, optimization strate-
gies, and evaluation procedures were applied across all
models, with the exception of learning rates and batch
sizes, which were optimized for maximal performance
on each individual network.
Results and Analysis. Tab. 1 presents further results
associated with Table 3 of the main text, detailing each
fold for SOTA methods and our proposed approach on
SODA and SCUTSEG datasets. Our proposed method
with ResNet-101 achieves the highest mIoU and FB-
IoU scores across all folds when compared to SOTA
models in both datasets. Although our method yields
the highest average scores of four folds, certain indi-
vidual folds (folds 1 and 2 in the 1-shot setting, fold
1 in the 5-shot setting for SODA, and fold 3 in the 5-
shot setting for SCUTSEG) exhibit second-place per-
formance.

E. Ablation Study

To effectively train the encoder, we utilize the pro-
posed datasets IRAug and RGBAux during the base
learner stage as detailed in the main text. In this abla-
tion study, we compare the base learner’s predictions
from different encoders to assess their impact. Tab. 2
presents the mean mIoU scores of base learner pre-

dictions across four folds for the test set. For both
ResNet-50 and ResNet-101 as encoders, the results
indicate enhanced mIoU scores with augmented and
auxiliary data in both datasets, with all proposed meth-
ods. This improvement signifies improved capturing
of features from both the support and query sets.

SODA SCUTSEG
Method ResNet-50 ResNet-101 ResNet-50 ResNet-101

Baseline 54.09 56.20 43.26 45.01
Method 1 55.67 57.32 47.65 48.41
Method 2 55.66 57.00 46.79 48.39
Method 3 56.10 57.18 47.35 50.81

Table 2. The mean mIoU of the base learner’s predictions
across four folds for the test set.
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