
3D Understanding of Deformable Linear Objects:
Datasets and Transferability Benchmark

Bare Luka Zagar1* , Mingyu Liu1* , Tim Hertel1* , Ekim Yurtsever2 , Alois Knoll1

1Technical University of Munich, 85748 Garching b. München, Germany
2 The Ohio State University, Columbus, OH 43212, USA

bare.luka.zagar@tum.de
*Authors contributed equally.

Figure 1. Examples of point clouds of complex deformable linear objects. Left: Wiring harness point cloud samples. Right: Blood vessel
point cloud samples.

1. PointWire Dataset1

The PointWire dataset samples with annotations are
given in the attached video - PointWire.mov. Additionally,
we show several PointVessel samples in Fig. 1.

1.1. Skeleton Comparison

We compared four different 3D skeleton algorithms:
ROSA2 [10], SkelTre3 [1], L1-Medial4 [5], Laplacian-based
contraction5 [2] qualitatively, as shown in Fig. 2. It is ev-
ident that the Laplace-based contraction methods [2] gives
visually the most accurate results.

1The dataset used for the segmentation experiments is attached in the
zip file PointWire Part.zip.

2https://github.com/taiya/rosa
3https://github.com/MarcSchotman/skeletons-from-poincloud
4https://github.com/facontidavide/PointCloudProcessing
5https://github.com/meyerls/PC-Skeletor

1.2. Blender Animation

The animated wiring harnesses in Blender are provided
in the attached video - PointWire Blender.mov.

2. PointVessel Dataset6

The original synthetic blood vessel dataset introduced
by [11] is generated by using the vascular tree generation
methods from [8, 9]. Examples of our PointVessel point
cloud dataset are given in Fig. 1.

3. Experimental Setting

In this study, we construct benchmarks for our proposed
PointWire and PointVessel datasets with the following six

6The dataset used for the segmentation experiments is attached in the
zip file PointVessel Part.zip

1

https://orcid.org/0000-0001-5026-3368
https://orcid.org/0000-0002-8752-7950
https://orcid.org/0009-0002-5162-6401
https://orcid.org/0000-0002-3103-6052
https://orcid.org/0000-0003-4840-076X
https://github.com/taiya/rosa
https://github.com/MarcSchotman/skeletons-from-poincloud
https://github.com/facontidavide/PointCloudProcessing
https://github.com/meyerls/PC-Skeletor


Method bs lr epoch opt sched
PointNet++ [6] 8 1e-3 200 Adam step
DGCNN [12] 8 2.5e-2 200 SGD cos
PCT [4] 8 2.5e-3 200 SGD cos
CurveNet [14] 8 1.25e-2 200 SGD cos
DeltaConv [13] 8 5e-2 200 SGD cos
RepSurf [7] 8 5e-2 200 SGD mstep

Table 1. Hyperparameters of benchmarks. bs is batch size, lr is
learning rate, opt is the optimizer that used in each method, and
sched is the scheduler. For scheduler, step is StepLR, msetp is
MultiStepLR and cos is CosineAnnealingLR.

Augmentation Rotation Perturbation Jitter Shift Random scaling

Parameter Range −180◦ ∼ 180◦ sigma=0.06 clip=0.01 range=0.1 low=0.8
clip=0.18 high=1.25

Table 2. Augmentation settings for robustness evaluation. We uti-
lize the same data augmentation setting for both PointWire and
PointVessel.

sota approaches, PointNet++7 [6], DGCNN8 [12], PCT9

[4], CurveNet10 [14], DeltaConv11 [13] and RepSurf12

[7]. All experiments were conducted using one NVIDIA
GeForce RTX 3090 (24Gb) with CPU AMD Ryzen Thread-
ripper 2950X 16-Core Processor. The hyperparameters of
each model are shown in Tab. 1. To establish fair bench-
marks, we set the batch size for all experiments to eight,
and the learning rates of each network were modified based
on the Linear Scaling Rule [3]. All models were trained for
200 epochs and we evaluated the best checkpoint, which
had the highest mean accuracy on the validation set, on the
test set. Furthermore, the optimizer of PointNet++ [6] was
Adam with the StepLR as the scheduler. All the other mod-
els [12] [4] [14] [13] [7] were trained with Stochastic Gra-
dient Descent (SGD) using the CosineAnnealingLR sched-
uler, except RepSurf, whose scheduler was StepLR.

4. Additional Quantitative Results
Scaling-up Training Data. To investigate the impact of
training data size on the model performance, we provide
the experimental results with partial training data, such as
5%, 10%, and 100%, in Tab. 3. As our expectation, the
performance of the model increases with more training data,
while DGCNN [12] exhibits stronger capability on learning
from smaller data in comparison with PCT [4].

Robustness Analysis. We investigate the robustness of
existing models trained on our datasets by applying various

7https://github.com/yanx27/Pointnet Pointnet2 pytorch
8https://github.com/AnTao97/dgcnn.pytorch
9https://github.com/MenghaoGuo/PCT

10https://github.com/tiangexiang/CurveNet
11https://github.com/rubenwiersma/deltaconv
12https://github.com/hancyran/RepSurf

Model Training PointVessel
Data Size mIoU↑ mAcc↑ OA↑ v IoU↑ b IoU↑

DGCNN [12]
5% 69.55 84.07 83.13 76.49 62.60

10% 73.47 86.67 85.71 79.85 67.06
100% 77.44 89.15 88.21 83.19 71.70

PCT [4]
5% 25.95 54.49 42.19 18.36 33.36

10% 33.62 59.07 50.39 31.75 35.50
100% 57.38 76.70 73.62 63.46 51.31

Table 3. Quantitative results with various training data sizes. We
evaluate the performance of DGCNN [12] and PCT [4] by training
the model with increased training data size from 1% to 100% using
the PointVessel dataset. The models are evaluated on the full 100%
PointVessel test set to assess the impact of training data size on
model performance.

augmentations during the evaluation process. Specifically,
we assess the performance of DGCNN [12] and PCT [4],
and the specific values of each augmentation are present in
Tab. 2. We present the experimental results in Tab. 4. In
general, the application of a broader range of augmenta-
tions negatively impacts the performance of both models.
However, PCT exhibits greater robustness to these augmen-
tations, particularly in terms of bifurcation, than DGCNN.

Fine-tuning Results. In Tab. 5, we illustrate the results
of DGCNN [12] and PCT [4]. Specifically, we initialize the
models using pretrained weights and fine-tune them on the
PointVessel dataset with an initial learning rate of 2.5e-4,
over 50 training epochs. All other hyperparameters remain
consistent with those outlined in Tab. 1. In general, fine-
tuning leads to performance improvements across all mod-
els, especially for the bifurcation category. However, there
remains a performance gap between fine-tuning and train-
ing the models directly on the PointVessel dataset.

5. Additional Qualitative Results
The qualitative results of samples 034/0199 and

038/0000 from PointWire are shown in Fig. 3. Further-
more, we show qualitative results of PointVessel (sample
0125/0077 and 0130/0033) in Fig. 4.

https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/AnTao97/dgcnn.pytorch
https://github.com/MenghaoGuo/PCT
https://github.com/tiangexiang/CurveNet
https://github.com/rubenwiersma/deltaconv
https://github.com/hancyran/RepSurf


Augmentations PointWirebifurcation PointVessel
mIoU↑ mAcc↑ OA↑ w.IoU/ACC b.IoU/ACC mIoU↑ mAcc↑ OA↑ v.IoU/ACC↑ b.IoU/ACC↑

(1) none 49.28 78.71 72.87 69.48/70.85 29.08/86.57 77.44 89.15 88.21 83.19/86.45 71.70/91.86
45.78 60.86 75.23 73.84/80.21 17.72/41.50 57.38 76.7 73.62 63.46/67.89 51.31/85.51

(2) (1) + rotation 49.14 78.68 72.72 69.30/70.66 29.00/86.71 77.40 89.13 88.18 83.14 /86.40 71.66/91.86
45.63 60.84 75.00 73.59/79.90 17.68/41.78 57.36 76.65 73.6 63.45/67.93 51.27/85.36

(3) (2) + perturbation 48.38 78.39 71.84 68.29/69.58 28.47/87.21 77.39 89.12 88.17 83.14/86.41 71.65/91.84
45.54 60.68 74.96 73.55/79.90 17.54/41.45 57.24 76.59 73.49 63.28/67.73 51.20/85.45

(4) (3) + jitter 47.89 78.11 71.31 67.69/68.96 28.10/87.26 75.15 88.11 86.71 81.01/84.10 69.28/92.11
45.51 61.12 74.64 73.16/79.31 17.87/42.94 55.59 75.88 71.99 60.95/64.81 50.23/86.87

(5) (4) + shift 47.47 77.92 70.83 67.14/68.38 27.81/87.47 75.08 88.06 86.67 80.96/84.06 69.19/92.05
45.45 61.76 74.18 72.59/78.47 18.31/45.05 55.41 75.66 71.85 60.80/64.74 50.02/86.58

(6) (5) + random scale 47.54 77.98 87.51 67.21/68.44 27.86/87.51 74.8 87.91 86.48 80.71/83.81 68.90/92.03
45.34 61.89 73.93 72.30/78.09 18.38/45.68 54.45 75.00 71.01 59.67/63.58 49.24/86.41

Table 4. Robustness evaluation results. To assess the robustness of the pretrained DGCNN [12] and PCT [4] models, we employ a range
of augmentations during the evaluation process.

Method Fine-tuning PointWireall → PointVessel PointWireb → PointVessel
mIoU↑ mAcc↑ OA↑ v Iou/Acc↑ b IoU/Acc↑ mIoU↑ mAcc↑ OA↑ v IoU/Acc↑ b IoU/Acc↑

DGCNN [12] wo 52.02 66.70 72.21 66.70/82.46 37.35/50.94 45.94 66.08 63.67 52.36/59.17 39.51/73.00
w 72.1 85.58 84.88 78.85/83.56 65.34/87.60 72.05 85.32 84.91 78.80/84.14 65.10/86.51

PCT [4] wo 40.34 55.02 62.90 58.51/77.53 22.17/32.51 38.14 54.95 57.36 49.46/61.83 26.82/48.06
w 49.88 70.41 67.15 55.64/61.07 44.13/79.75 44.44 66.49 61.81 48.39/53.08 40.51/79.89

Table 5. Fine-tuning results of DGCNN [12] and PCT [4]. Fine-tuning the pretrained models on the PointVessel dataset yields a substantial
performance improvement compared to directly evaluating the models without additional training.



Sample 000 Sample 007 Sample 008 Sample 010 Sample 019 Sample 025

In
pu

tP
oi

nt
C

lo
ud

L1
m

e
d
ia

l
La

pl
ac

e
R

os
a

Sk
el

tr
e

Figure 2. Qualitative comparison of the 3D skeleton algorithms. L1medial: L1 medial skeleton method, Laplace: Laplacian-based contrac-
tion method, Rosa: Rotational symmetry axis method, Skeltre: Skeletonisation of trees method.



Ground Truth PointNet++ DGCNN PCT CurveNet DeltaConv RepSurf

P
W

a
P

W
b

P
V
→

P
W

b
P

W
a

P
W

b
P

V
→

P
W

b

Figure 3. Qualitative results on PointWire all classes (PWa), PointWire bifurcation (PWb) and the transferability benchmark on the
PointWire bifurcation (PV → PWb). For PWa and PWb, gray points are the wires, endpoints are blue, and green ones are bifurcations. The
first three rows show the results from sample 034/0199, and the last three are from sample 038/0000.



Ground Truth PointNet++ DGCNN PCT CurveNet DeltaConv RepSurf

P
V

P
W

a
→

P
V

P
W

b
→

P
V

P
V

P
W

a
→

P
V

P
W

b
→

P
V

Figure 4. Qualitative results on PointVessel and transferability benchmark on PointVessel. PointWire all classes to PointVessel (PWa →
PV), PointWire bifurcation to PointVessel (PWb → PV). We show vessels and bifurcations in red and green. The results from 0125/0077
and 0130/0033 are shown in the first three and last three rows, respectively.



References
[1] Alexander Bucksch, Roderik Lindenbergh, and Massimo

Menenti. Skeltre: Robust skeleton extraction from imperfect
point clouds. The Visual Computer, 26:1283–1300, 2010.

[2] Junjie Cao, Andrea Tagliasacchi, Matt Olson, Hao Zhang,
and Zhixun Su. Point cloud skeletons via laplacian-based
contraction. In Proc. of IEEE Conf. on Shape Modeling and
Applications, 2015.

[3] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

[4] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7:187–199, 2021.

[5] H. Huang, S. Wu, D. Cohen-Or, M. Gong, H. Zhang, G. Li,
and B.Chen. L1-medial skeleton of point cloud. ACM Trans-
actions on Graphics, 32:65:1–65:8, 2013.

[6] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017.

[7] Haoxi Ran, Jun Liu, and Chengjie Wang. Surface representa-
tion for point clouds. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18942–18952, 2022.

[8] Matthias Schneider, Sven Hirsch, Bruno Weber, Gábor
Székely, and Bjoern H Menze. Tgif: Topological gap in-
fill for vascular networks: A generative physiologicalmodel-
ing approach. In Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2014: 17th International
Conference, Boston, MA, USA, September 14-18, 2014, Pro-
ceedings, Part II 17, pages 89–96. Springer, 2014.

[9] Matthias Schneider, Johannes Reichold, Bruno Weber,
Gábor Székely, and Sven Hirsch. Tissue metabolism
driven arterial tree generation. Medical image analysis,
16(7):1397–1414, 2012.

[10] Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or.
Curve skeleton extraction from incomplete point cloud. ACM
Transactions on Graphics (Proc. SIGGRAPH), 2009.

[11] Giles Tetteh, Velizar Efremov, Nils D. Forkert, Matthias
Schneider, Jan Kirschke, Bruno Weber, Claus Zimmer,
Marie Piraud, and Björn H. Menze. Deepvesselnet: Vessel
segmentation, centerline prediction, and bifurcation detec-
tion in 3-d angiographic volumes. Frontiers in Neuroscience,
14, 2020.

[12] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019.

[13] Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and
Klaus Hildebrandt. Deltaconv: anisotropic operators for ge-
ometric deep learning on point clouds. ACM Transactions on
Graphics (TOG), 41(4):1–10, 2022.

[14] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and
Weidong Cai. Walk in the cloud: Learning curves for point

clouds shape analysis. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 915–924,
2021.


	. PointWire Dataset[1]The dataset used for the segmentation experiments is attached in the zip file PointWire_Part.zip.
	. Skeleton Comparison
	. Blender Animation

	. PointVessel Dataset[6]The dataset used for the segmentation experiments is attached in the zip file PointVessel_Part.zip
	. Experimental Setting
	. Additional Quantitative Results
	. Additional Qualitative Results

