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This supplementary document includes further implementation details of the proposed Planar Gaussian Splatting method,

which is discussed in Section A. Additionally, we provide an evaluation of geometry reconstruction and present more quan-

titative results in Section B.

A. Implementation Details

We initialize the Gaussian locations and color with the sparse point cloud obtained by running SfM on training images.

We train the model on a single NVIDIA GeForce RTX 2080 Ti for 15K iterations. We follow almost all the hyperparameters

introduced in [16], except that we increase the densification threshold on the gradient to 0.001 in order to limit the number

of cloning/splitting Gaussians and using only two degrees of spherical harmonics because a high-quality rendering is not

the primary objective of this work. Cutting edges of RAG is performed by setting a threshold of 10 cm on planar distances

and 20 degrees for the surface normal cosine distance. The recursive mean-shift is run once after 2k iterations of training

and repeated every 100 training iterations, and the number of update steps (Eq. 8) performed each time is set to 10 with γ

equal to 60. The number of neighbours (K) is equal to 30 and the KNN is recomputed after applying any refinement to the

3D Gaussian field, including cloning, splitting, and culling of the Gaussians. Local planar alignment is applied every 500

iterations.

A.1. Efficient implementation of holistic separability

Applying recurrent mean-shift to the descriptor vectors of all Gaussian points in the scene enhances the separability among

descriptors corresponding to distinct planes. The mean-shift update computation involves recursively evaluating Eq. (8) for

a specified number of steps:

Z ← Z · (η ·K ·D
−1 + (1− η) · I),

where Z ∈ R
N×d denotes the matrix of descriptors of length d (e.g., d = 3 in our experiments) for the entire scene with N

number of Gaussian points (typically in the order of millions). To compute pairwise distances using the von Mises-Fisher

kernel, we encounter a challenge: the computation of K ∈ R
N×N is quadratic with respect to the number of Gaussian points

in the scene. This becomes infeasible in terms of computational memory.

In our implementation, we tackle this issue by initially estimating the kernel on a random subset of samples with M points

(where M ≪ N ). As a result, the estimated kernel K ∈ R
M×M and the update vectors (right-hand side of the equation) are

propagated and shared across all KNN samples within the chosen set. The random sampling process (without replacement)

continues until an update vector has been computed for all samples or their neighbors. Estimating the mean-shift updates for

a large number of Gaussian points in the scene using this sampling strategy takes approximately one second on the GPU, and

the required memory can be accommodated within the available resources. Notably, in our experiments, holistic separability

occurs every N =100 iterations, introducing only minor overhead to the training time.
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Figure 5. Example of merging SAM proposals and lifting their boundary points into 3D. The boundary points of each segments is used for

estimating a Gaussian distribution in 3D as a leaf node of GMT.

A.2. Local grouping of Gaussians primitives

In Section 3.2, we address the construction of the Gaussian Mixture Tree (GMT). Rather than directly utilizing the Gaus-

sian points at the leaf nodes — a computationally expensive approach, especially when dealing with a large number of points

in a 3D scene — we adopt an alternative strategy. The GMT is formed by computing a set of Gaussian distributions over

point clusters derived from all training images. Each cluster corresponds to points belonging to SAM proposal masks after

refinement (achieved through merging via RAG).

Figure 5 illustrates this process: (a) SAM Proposals represent distinct regions; (b) the refined version merges the proposals

on the same planar surface; (c) boundary points of each mask proposal are lifted into 3D space using the rendered depth map

and camera parameters. For each set of boundary 3D points, the mean and covariance matrix of a Gaussian distribution is

computed. By estimating the Gaussian distributions from all training images collectively, the leaf nodes of the Gaussian

Mixture Tree are determined. These nodes are subsequently used to construct the tree, as explained in Section 3.2.

B. Additional Evaluations

This section provides more quantitative and qualitative evaluation of the Planar Gaussian Splatting (PGS).

Table 4. Performance of geometric reconstruction on ScanNet.

Method Accuracy↓ Completeness ↓

PlanarRecon [40] 0.154 0.187

PGS (ours) 0.137 0.118

B.1. Geometric reconstruction

In addition to evaluating 3D plane instance segmentation, we assess the performance of both PlanarRecon and the proposed

Planar Gaussian Splatting on geometric reconstruction. This evaluation involves measuring the distances between the ground-

truth 3D meshes and the surfaces of 3D planes. We adhere to common practice and report reconstruction quality using

Accuracy and Completeness metrics (see [27] for their mathematical definitions). The accuracy quantifies the mean distance

of the reconstruction points from the ground truth. Completeness measures the extent to which the ground truth is recovered

and is defined as the mean distance of the ground truth points to the reconstruction points. In Table 4, we present the measured

distances for the ScanNet scenes. Notably, the predicted planes by the proposed PGS exhibit lower distances compared to

the ground truth mesh.

B.2. Visualization of plane descriptors of Gaussian field

Figure 5 shows samples scenes of ScanNet and Replica, and the learnt plane descriptors. The visualized points are the

centers of Gaussians where are colorized by the learnt descriptors. The distinct colors assigned to different 3D plane instances

illustrate the effectiveness of our learnt descriptors in 3D Gaussian field.
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Table 5. Visualization of learnt plane descriptors by planar Gaussian splatting for sample ScanNet and Replica scenes. (a) Ground-truth

textured meshes, (b) 3D Gaussian point cloud, colorized by the corresponding plane descriptor.


