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This supplementary document is organized as follows:
– Section 1 provides the rate-distortion (RD) perfor-

mance of the Gaussian noise degradation setting, where the
results are evaluated with MS-SSIM versus BPP.

– Section 2 includes the ablation studies that investigate
the number of groups in C-GA, and the effectiveness of the
adopted training scheme.

– Section 3 provides more qualitative comparisons on
the weather degradation setting and Gaussian noise setting,
including synthetic realistic weather-degraded images (Sec-
tion 3.1), realistic weather-degraded images (Section 3.2),
Gaussian noise-degraded images (Section 3.3) and clean
images (Section 3.4).

– Section 4 investigates the performance of cascaded so-
lutions regarding the sequence of image restoration and im-
age compression.

– Section 5 provides results of multiple downstream
tasks to demonstrate the potential of the proposed method
in real-world applications.

– Section 6 provides details of the experimental settings,
including the detailed configurations of network architec-
ture (Section 6.1), an overview of the adopted datasets (Sec-
tion 6.2) and the training details (Section 6.3).

1. Rate-Distortion Performance

Gaussian noise degradation setting. The RD performance
on the noisy Kodak dataset [6] is reported in Figure 2, where
the inputs are degraded by both seen (i.e., σ = 15, 25, 50)
and unseen (i.e., σ = 35, 45, 55) Gaussian noise. We eval-
uate the RD performance with MS-SSIM versus BPP. As
shown in Figure 2, Ours-L shows superiority over all com-
pared methods at all noise levels, while containing much
lower model complexity and higher inference speed than
the cascaded solutions (as outlined in Sec. 4.3). Moreover,
despite the joint EVC* showing competitive performance
at lower noise levels, its performance drops significantly
with the increase in noise levels. Ours-S surpasses the joint
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Figure 1. (a) Ablation study on the number of groups Ng in C-
GA. (b) Ablation study on the effectiveness of progressive training
strategy.

EVC* by a large margin and achieves comparable perfor-
mance with the well-preformed AirNet+EVC, while pro-
viding a 7.15× speedup and requiring only 10.91% of the
FLOPs. These results highlight the superior performance
and generalization ability of the proposed method.

2. Ablation Studies

We construct a baseline model with the number of
groups Ng = 4 in Sec. 4.5. In this section, we investigate
the rationality of such a configuration, and further demon-
strate the effectiveness of the adopted progressive training
strategy. All ablation studies are conducted with Ours-S on
the weather degradation setting, and evaluated on the RE-
SIDE dataset [8].
Number of groups in C-GA. To identify the optimal con-
figuration regarding the number of groups Ng , we assign
various values (i.e., 1, 2, 4, 8, 16 and 32) to Ng , then apply
the specified Ng to all C-GA layers in the encoder and de-
coder across 4 stages. The RD performance comparison is
reported in Figure 1(a). As can be seen, the configuration
of Ng = 4 (depicted as the green curve) achieves the best
RD performance. Therefore, we adopt the configuration of
Ng = 4 in the proposed method.
Effectiveness of progressive training strategy. To eval-
uate the effectiveness of the progressive training strategy,
we remove it and train the network for the same number of
iterations (denoted as w/o Progressive). As shown by the
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Figure 2. RD performance evaluation on the Kodak dataset [6], where inputs are corrupted by known levels (i.e., 15, 25 and 50) and
unknown levels (i.e., 35, 45 and 55) of Gaussian noise. We evaluate the results with MS-SSIM.

blue curve in Figure 1(b), discarding the progressive train-
ing strategy results in a noticeable performance drop com-
pared with the original design (green curve).

3. Qualitative Comparisons
3.1. Synthetic Weather-degraded Images

We provide qualitative comparisons on synthetic hazy,
snowy and rainy images in Figure 3, Figure 6 and Figure 7,
respectively. For each image, we provide the quantitative
metrics of BPP, PSNR and MS-SSIM. As shown in Fig-
ure 3, cascaded solutions and the joint EVC* cannot fully
rectify degradations and are likely to introduce color bias
for the hazy inputs, such as the buildings in the 1st row.
For the snowy results shown in Figure 6, cascaded solutions
and joint EVC* fail to effectively eliminate the degradations
and may introduce artifacts for degraded regions (e.g., the
ground region occluded by snow in the 1st row), while the
joint EVC* additionally introduces noise. For rainy results
depicted in Figure 7, cascaded methods struggle to distin-
guish the image content from rain streaks, which results in
the loss of valid textures and blur, such as the roof in the 2nd
row. The joint EVC* fails in removing the rain streaks and
further introduces visually unpleasant noise (e.g., the box in
the 4th row). In contrast, our method effectively removes
degradation and keeps accurate details with lower bit rates.

3.2. Realistic Weather-degraded Images

We provide more qualitative comparisons on realistic
hazy, snowy and rainy images in Figure 8, Figure 9 and Fig-
ure 10, respectively. As can be seen from Figure 8, the joint
EVC* and most cascaded methods struggle in generalizing

to realistic hazy images, and may even introduce artifacts
(e.g., the results of SwinIR+EVC). Although the cascaded
Restormer+EVC successfully eliminates the haze degrada-
tion, the results exhibit unnatural contrast and brightness
(e.g., the door in the 2nd row). In the snowy scenario de-
picted in Figure 9, the joint EVC* introduces additional
noise and spends extra bits to preserve the degradations. In
contrast, our method improves the contrast and effectively
eliminates visible snow (e.g., the building in the 1st row),
thus outperforming the compared solutions. For the rainy
images in Figure 10, the joint EVC* introduces texture dis-
tortion, while most cascaded methods fail to remove rain
streaks (e.g., the rainy case in the 1st row), and may am-
plify artifacts in the process of cascaded image restoration
and compression (e.g., the wall in the 2nd row). Despite
SwinIR+EVC performing well in eliminating rain streaks,
it removes valid image structures, such as the corner in the
1st case. In contrast, our method effectively removes rain
streaks and preserves the background with lower bit rates.

3.3. Gaussian Noisy Images

Qualitative results of the Gaussian noise degradation set-
ting are shown in Figure 11, where the noise level is set to
σ = 15. As can be seen, although the cascaded methods
seem to keep plausible textures, these textures are unreal
and distorted (e.g., the hair in the 1st row). Meanwhile, the
joint EVC* and cascaded solutions tend to introduce over-
smoothness (e.g., the window in the 2nd row), leading to
the loss of textures and details. The proposed method ef-
fectively eliminates noise degradation and preserves details,
demonstrating its ability to handle various levels of noise



Hazy Input AirNet + EVC
0.3654 / 29.80 / 0.9859

Restormer + EVC
0.3461 / 32.97 / 0.9891

WGWSNet + EVC
0.3463 / 20.67 / 0.9310

SwinIR + EVC
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Ground Truth
BPP / PSNR / MS-SSIM
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WGWSNet + EVC
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0.5871 / 32.84 / 0.9886

Ground Truth
BPP / PSNR / MS-SSIM

EVC*
0.8596 / 15.59 / 0.7285
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Ours
0.4709 / 32.74 / 0.9767
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0.5243 / 32.88 / 0.9853

Restormer + EVC
0.5024 / 24.39 / 0.9865

WGWSNet + EVC
0.5312 / 22.28 / 0.9412

SwinIR + EVC
0.5168 / 31.14 / 0.9848

Ours
0.4599 / 33.34 / 0.9879

Ground Truth
BPP / PSNR / MS-SSIM

EVC*
0.8612 / 16.87 / 0.7469

Figure 3. Qualitative comparisons on synthetic hazy images, where cascaded solutions are denoted referred to as restoration + compression,
and Ours denotes the results of Ours-L. For each image, we include metrics of BPP/PSNR/MS-SSIM.
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Figure 4. Discussion regarding the sequence of image restoration
and compression, where Restor. and Compres. denote restoration
and compression, respectively. We evaluate the RD performance
with PSNR.

and finer details with a unified framework.

3.4. Clean Images

We provide qualitative comparisons on clean images in
Figure 5. As can be seen, despite the proposed method
showing a slight drop in quantitative performance compared
to the clean-image-specific EVC (Fig. 71), the visual differ-
ences are negligible (e.g., the door and flower). When deal-
ing with intricate details, the proposed method even pro-
vides more visually pleasing results (e.g., the hair in the 3rd
row). However, in challenging scenarios, such as the water

1To differentiate from this supplementary material, we use abbrevia-
tions to denote sections, tables, and figures in the paper (i.e., “Sec.” for
sections, “Tab.” for tables, and “Fig.” for figures).

ripples in the 4th row, both EVC and our method struggle
to deliver high-fidelity results, which occasionally leads to
a loss of texture in other regions (e.g., the sky in the last
row), since most of the bits are spent to preserve the details
of water surface.

4. Sequence of Cascaded Solutions
For the cascaded solutions, we further discuss the

sequence of image restoration and image compres-
sion, denoted as restoration+compression and compres-
sion+restoration, respectively. We adopt Restormer [16]
and EVC [4] for image restoration and image compression,
respectively. The performance of EVC [4] on degraded im-
ages (denoted as compression only) is provided for refer-
ence. As illustrated in Figure 4, compression only under-
performs on degraded images due to its tendency to faith-
fully preserve degraded inputs. Compared with the restora-
tion+compression, compression+restoration yields inferior
rate-distortion performance, which may result from the
degradation mismatch between the compressed results and
the subsequent image restoration model. The sequence of
restoration+compression shows an overall promising per-
formance in improving the quality of inputs and reducing
the size of images. Therefore, we compare our models with
the restoration+compression solution in Sec. 4.2.

5. Real-world Applications
In this section, we devote the compressed results to mul-

tiple downstream tasks, i.e., Object Detection (OD) and



EVC
0.6861 / 37.37 / 0.9833

Ours
0.6905 / 37.60 / 0.9846

Clean Input

EVC
0.5404 / 39.61 / 0.9946

Ours
0.5373 / 39.51 / 0.9946

Clean Input

EVC
0.3747 / 35.25 / 0.9776

Ours
0.3744 / 35.54 / 0.9789

Clean Input

EVC
0.5971 / 34.56 / 0.9848

Ours
0.5911 / 34.40 / 0.9850

Clean Input

EVC
0.4629 / 32.09 / 0.9697

Ours
0.4504 / 31.99 / 0.9696

Clean Input

Figure 5. Qualitative comparisons on clean images, where metrics
of BPP/PSNR/MS-SSIM are reported for each image.

Method EVC Restormer+EVC AirNet+EVC Ours-S Ours-L

mAP ↑ 43.21 52.15 54.02 53.93 54.93
Recall ↑ 0.44 0.51 0.51 0.52 0.54
δ1 ↑ 0.859 0.880 0.879 0.936 0.939

AbsRel ↓ 0.132 0.131 0.125 0.087 0.083
RMSE ↓ 0.540 0.371 0.383 0.302 0.292

Table 1. Results on the task of OD and MDE, where the best and
second best results are highlighted with bold and underline.

Monocular Depth Estimation (MDE), to evaluate the po-
tential of the proposed method in real applications (e.g., au-
tonomous driving). We adopt the pre-trained Swin Trans-
former [11] for Object Detection (OD) and Depth Any-
thing [15] for Monocular Depth Estimation (MDE) on the
compressed results of RESIDE dataset [8]. To demonstrate
the improvement introduced by compared methods and the
proposed method, we provide the results of EVC [4] (tai-
lored for clean images) as a reference. We compare with the
well-performing cascaded solutions Restormer+EVC and
AirNet+EVC. As shown in Table 1, the proposed Ours-
L introduces superior improvement over other methods,
while Ours-S also achieves competitive performance and
surpasses almost all the cascaded methods. The significant

improvement over EVC and cascaded methods shows the
effectiveness of our method in improving the performance
of OD and MDE on degraded images, demonstrating its po-
tential for practical scenarios.

6. Experimental Settings
6.1. Network Architecture

Each stage in the encoder and decoder consists of 4
hybrid-attention transformer blocks. The number of groups
Ng in channel-wise group attention (C-GA) is set to 4. For
the spatially decoupled attention (S-DA), we set the kernel
sizes Kv and Kh of depth-wise convolution to 5. For the
entropy model, we adopt the dual spatial prior configura-
tion [9]. In the comparison of attention variants, to keep
similar computational complexity, we set the number of
MDTA and SWTA to 2-3-3-4 and 1-1-1-1 across the four
stages, respectively.

6.2. Dataset

Weather degradation setting. This setting includes
weather-related degradations, i.e., haze, snow and rain. For
the synthetic images, the Rain1400 dataset [3] contains
12,600 pairs of rainy-clean images for training and 1,400 for
testing, with rain streaks of different levels included. The
RESIDE dataset [8] comprises the ITS dataset (72,135 im-
ages) for training and the OTS dataset (500 images) for test-
ing. The CSD dataset [1] includes 8,000 snowy images for
training and 2,000 images for testing. By convention [2,13],
we randomly select 5,000 images from each dataset, and
merge them for training. Testing splits of these datasets
are adopted for quantitative and qualitative evaluation. For
the realistic images, six indoor scenes from the REVIDE
dataset [17] (with four different styles) are used for evalu-
ation. Snow100K [10] offers 1,329 realistic snowy images
for evaluation, which differs a lot from the synthetic snowy
scenario. Based on SPA [14], SPA+ [18] removes images
with repetitive backgrounds and further densifies the rain
streaks.
Gaussian noise degradation setting. We adopt the test-
ing split of Open Images [7] for training, which consists of
125,436 high-quality images. The Kodak [6] dataset pro-
vides 24 high-quality images for evaluation.

6.3. Training Details.

During training, to guarantee the versatility of the pro-
posed method for both clean and degraded images, we ran-
domly select clean images as input with a probability of
0.2. For each input image, it is randomly augmented with
cropping, horizontal flip, and vertical flip. We adopt the
Adam optimizer [5] with β1 = 0.9, β2 = 0.999. The initial
learning rate is set to 1 × 10−4 and adjusted with the Co-
sine Annealing scheme [12]. For the progressive training



Snowy Input AirNet + EVC
0.6418 / 30.55 / 0.9632

Restormer + EVC
0.5661 / 28.07 / 0.9606

WGWSNet + EVC
0.6293 / 19.31 / 0.7163

SwinIR + EVC
0.5654 / 30.35 / 0.9621

Ours
0.5558 / 34.00 / 0.9763

Ground Truth
BPP / PSNR / MS-SSIM

EVC*
0.8475 / 10.02 / 0.5979

Snowy Input AirNet + EVC
0.6285 / 31.62 / 0.9813

Restormer + EVC
0.6073 / 32.15 / 0.9837

WGWSNet + EVC
0.6355 / 21.81 / 0.8008

SwinIR + EVC
0.6042 / 31.09 / 0.9748

Ours
0.5978 / 34.18 / 0.9872

Ground Truth
BPP / PSNR / MS-SSIM

EVC*
0.8659 / 16.38 / 0.6560

Snowy Input AirNet + EVC
0.6720 / 32.59 / 0.9790

Restormer + EVC
0.7615 / 32.63 / 0.9795

WGWSNet + EVC
0.7498 / 21.43 / 0.8282

SwinIR + EVC
0.6962 / 30.55 / 0.9755

Ours
0.6685 / 35.25 / 0.9839

Ground Truth
BPP / PSNR / MS-SSIM

EVC*
0.9017 / 16.17 / 0.7055

Snowy Input AirNet + EVC
0.8242 / 29.39 / 0.9721

Restormer + EVC
0.8219 / 31.28 / 0.9738

WGWSNet + EVC
0.7994 / 20.27 / 0.8275

SwinIR + EVC
0.7534 / 30.33 / 0.9698

Ours
0.7375 / 33.91 / 0.9790

Ground Truth
BPP / PSNR / MS-SSIM

EVC*
0.8731 / 12.51 / 0.6550

Figure 6. Qualitative comparisons on synthetic snowy images, where cascaded solutions are referred to as restoration + compression, and
Ours denotes the results of Ours-L. For each image, we include metrics of BPP/PSNR/MS-SSIM.

Rainy Input AirNet + EVC
1.1009 / 26.30 / 0.9755

Restormer + EVC
1.0085 / 25.67 / 0.9714

WGWSNet + EVC
1.0198 / 25.84 / 0.9749

SwinIR + EVC
1.0418 / 27.70 / 0.9809

Ours
0.9838 / 27.71 / 0.9803

Ground Truth
BPP / PSNR / MS-SSIM

EVC*
1.1738 / 22.10 / 0.8843

Rainy Input AirNet + EVC
0.4317 / 32.27 / 0.9707

Restormer + EVC
0.4370 / 32.37 / 0.9722

WGWSNet + EVC
0.4414 / 30.84 / 0.9679

SwinIR + EVC
0.4342 / 32.29 / 0.9725

Ours
0.4055 / 32.79 / 0.9757

Ground Truth
BPP / PSNR / MS-SSIM

EVC*
0.8970 / 20.86 / 0.6984

Rainy Input AirNet + EVC
1.9057 / 24.24 / 0.9439

Restormer + EVC
1.8931 / 26.07 / 0.9520

WGWSNet + EVC
1.8793 / 23.00 / 0.9369

SwinIR + EVC
1.9242 / 25.90 / 0.9525

Ours
1.8376 / 26.56 / 0.9600

Ground Truth
BPP / PSNR / MS-SSIM

EVC*
1.9746 / 18.10 / 0.8235

Rainy Input AirNet + EVC
0.7547 / 29.31 / 0.9551

Restormer + EVC
0.7634 / 29.84 / 0.9607

WGWSNet + EVC
0.7071 / 27.74 / 0.9515

SwinIR + EVC
0.7894 / 29.68 / 0.9605

Ours
0.6981 / 30.18 / 0.9660

Ground Truth
BPP / PSNR / MS-SSIM

EVC*
1.0331 / 18.74 / 0.7846

Figure 7. Qualitative comparisons on synthetic rainy images, where cascaded solutions are referred to as restoration + compression, and
Ours denotes the results of Ours-L. For each image, we include metrics of BPP/PSNR/MS-SSIM.

strategy, we train the network with the patch size of 256,
320 and 384 for 250K, 100K and 50K iterations, respec-

tively. To conduct a fast evaluation in the ablation studies,
the baseline model that investigates the number of channels



Hazy Input AirNet + EVC
0.1395 bpp

Restormer + EVC
0.1381 bpp

WGWSNet + EVC
0.1267 bpp

SwinIR + EVC
0.1449 bpp

EVC*
0.8791 bpp

Ours
0.1295 bpp

Hazy Input AirNet + EVC
0.1247 bpp

Restormer + EVC
0.1225 bpp

WGWSNet + EVC
0.1193 bpp

SwinIR + EVC
0.1115 bpp

EVC*
0.7538 bpp

Ours
0.1295 bpp

Hazy Input AirNet + EVC
0.1603 bpp

Restormer + EVC
0.1600 bpp

WGWSNet + EVC
0.1712 bpp

SwinIR + EVC
0.1596 bpp

EVC*
0.7889 bpp

Ours
0.1295 bpp

Figure 8. Qualitative comparisons on realistic hazy images, where cascaded solutions are denoted referred to as restoration + compression,
and Ours denotes the results of Ours-L. We include BPP for each image.
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0.7233 bpp

Restormer + EVC
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WGWSNet + EVC
0.7903 bpp

SwinIR + EVC
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EVC*
0.8932 bpp

Ours
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Snowy Input AirNet + EVC
0.4926 bpp

Restormer + EVC
0.4956 bpp

WGWSNet + EVC
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EVC*
0.8645 bpp

Ours
0.4585 bpp

Snowy Input AirNet + EVC
0.7518 bpp

Restormer + EVC
0.7044 bpp

WGWSNet + EVC
0.7130 bpp

SwinIR + EVC
0.7499 bpp

EVC*
0.8744 bpp

Ours
0.6788 bpp

Figure 9. Qualitative comparisons on realistic snowy images, where cascaded solutions are denoted referred to as restoration + compres-
sion, and Ours denotes the results of Ours-L. We include BPP for each image.

Ng , the experiment that verifies the effectiveness of S-DA,
the model disposing of spatial decoupling design, and the
models composed by different attention variants are trained
for 300K iterations. To investigate the effectiveness of the
progressive training strategy, we train the complete model
for 400K iterations under the conditions of with and with-
out the progressive training strategy.
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