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1. Gait Examples in SUSTech1K

1.1 Demonstration of Gait Diversity

In this section, we provide a comprehensive demonstration of samples with all attributes in
SUSTech1K, including raw RGB images, silhouettes, depth images, voxelized frames, and GaitCloud. The
names of distributes are specified as follows: Gallery---Normal sample for referring in inference of
variance experiments, nm---Normal samples for probe set in inference, bg---Bag, cl---Clothing, cr---
Carrying, ub---Umbrella, uf---Uniform, oc---Occlusion, nt---Night. Both voxelized frames and GaitCloud
are rotated to face the same direction, following the proposed gait rotation workflow. GaitCloud is
generated using the same voxelization and temporal integration processes described in the paper.

Variance. Figure 1 presents examples of gait samples categorized by walking conditions (variance).
Samples with the same attributes exhibit detailed variations, indicating they are not strictly constrained
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Figure 1. Examples of gait samples from different Variance.



by predefined criteria. Some samples also have multiple attributes such as “01-bg-ub”, meaning the
subject is carrying both a bag and an umbrella, and will be considered in the inference for both the Bag
and Umbrella attributes.

View. Figure 2 presents samples from different views of the same identity, all within the 00-nm
attribute. Both voxelized frames and GaitCloud representations are generated using the same process as

in Variance.
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Figure 2. Examples of gait samples from different Views.

1.2 Attribute Distribution

Figure 3 shows the number of samples in each attribute in the dataset. Similar distribution
imbalances can be observed both in training and test sets. These imbalances may lead the model to
prioritize adapting to attributes with larger sample populations and weaken the impact of a small number
of samples on the overall accuracy of the inference.
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Figure 3 Data distributions on (a) training set and (b) test set.



1.3 GaitCloud Representations with Varying Numbers of Frames.

Figure 4 presents GaitClouds created with different numbers of frames used in the ablation study
on frame numbers. As the number of frames increases, the complexity of the point cloud contours also
increases, capturing more gait-related statistical features for high-performance recognition.

We only investigate the largest frame number of 30 since the length of most sequences in SUSTech1K
is around 25. Selecting a number > 40 for sample frames may lead to an overabundance of self-replicating
samples according to the random temporal cropping procedure, rendering the test results meaningless.
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Figure 4 GaitCloud created with different number of frames

2. Supplementary Results

2.1 Computational Efficiency

Table 1 shows the data size of a GaitCloud and a depth image sequence used for experiments. The
data size of a depth image sequence scales with the number of frames used in a sample, whereas the
data size of GaitCloud remains constant regardless of the number of frames. This property allows
GaitCloud to achieve high recognition performance without increasing computational complexity.

Table 2 shows the computational comparison results of different models. All training ran on the

|  GaitCloud Depth Images GaitCloud(temporal)
Shape | 40 x 40 x 60 10 x 3 x 64 x 64 10 x 64 x 40 x 40
Type | Uint8 Uint8 Uint8
Size |  101KB 121KB 1004KB

Table 1 Comparison on different gait representations

|GaitC10ud LidarGait 3D LidarGait

Parameters | 43M 8M 17M
GPU mem.(MB) | 2864 1356 13534
Forward time(s) | 0.0171 0.004 0.1209

Table 2 Computational comparison



same GPU server with a single RTX 4090. Most of the additional parameters in GaitCloud come from HCP.
Despite the large number of parameters, the computational overhead of GaitCloud is trivial, since the
kernel size of HCP is equal to input features and the exact operation is equivalent to the summation with

learnable weight.
2.2 Detailed Results on Cross-view Experiments

We demonstrate results from cross-view experiments for all experimental groups presented in the
main results with detailed heatmaps, shown in Figure 4. Baseline+LE+HCP achieves the best cross-view

accuracy over all groups.
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Figure 5 Detailed cross-view results from each group.



2.3 Detailed Results on Layer Reduction Experiments.

Table 3 shows the comparative results of models with and without the modules. ‘Layers’ indicates
the number of residual blocks to construct the feature encoder. The Detailed results of cross-view
experiments are shown in Figure 6.

Model Lavers Probe Attributes (Rank-1 accuracy) Overall Views
4 Normal Bag  Clothing Carrying Umbrella Uniform  Occlusion  Night [ Rankl  Rankl
T 2 8891 9155 82.41 92.02 90.76 92.92 94.05 92.06 | 91.40 93.32
1 84.65  89.06 81.48 89.21 88.09 89.56 91.50 88.31 88.61 87.5
baseline 2 87.23  91.50 79.63 90.84 89.37 91.20 93.37 91.20 | 90.25 93.35
+LE+HCP 1 86.02  89.87 80.32 89.33 88.89 89.20 91.16 89.03 | 88.87 92.45

Table 3 Accuracy on baseline and proposed models with different number of encoder blocks.
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Figure 6 Detailed results in cross-view experiments
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