
A. Limitations
One limitation of our OT-VP approach is its reliance

on the quality of pseudo labels for computing the Opti-
mal Transport distance. As visualized in our t-SNE plots
3, there’s a risk of occasional misalignment due to in-
accurate pseudo-labeling, which can adversely affect the
model’s ability to accurately bridge the source and target
domain gap. While implementing entropy-based filtering
akin to T3A [16] could mitigate this by filtering out high-
entropy, less reliable pseudo labels, the fundamental limi-
tation remains: OT-VP’s capacity to perform effective test-
time adaptation may be significantly hindered if the pseudo
labels are entirely unreliable or carry no meaningful infor-
mation about the true class distribution.

B. Full Results
B.1.

In this section, we present the computation time for OT-
VP on the PACS dataset. We optimize only 4 prompt to-
kens over 5 epochs, utilizing a 20% hold-out split from both
source and target data. While the multi-source setting in-
volves processing triple the data to compute source repre-
sentations compared to the single-source setting, the time
required for both is nearly identical. Specifically, the aver-
age time is 39.5 seconds for the multi-source and 38.7 sec-
onds for the single-source setting on the PACS dataset on
our hardware. Moreover, the computational time is slightly
influenced by the size of the datasets but remains relatively
quick. For instance, in the PACS dataset, domain S, which
has more than double the data of domain P, requires more
processing time—51.7 seconds for S versus 34.5 seconds
for P in the multi-source setting. Full results for PACS
can be found in Table 5 in Appendix. In conclusion, OT-
VP can efficiently learn prompts in both single and multi-
source settings without significant computational overhead.
For the single-source setting, the average computation time
is calculated across three different sources.

Setting A C P S Avg
Single-Source 32.6 37.5 33.7 50.8 38.7
Multi-Source 33.9 38.0 34.5 51.7 39.5

Table 5. Average computation time (seconds) for OT-VP on PACS
dataset.

B.2.
In this section, we provide details for the three stylis-

tic datasets and one corrupted dataset. PACS [23] is com-
posed of four domains: Photos, Art, Cartoon, and Sketch,
containing 9,991 images in 7 classes. VLCS [8] com-

prises four real-world photographic datasets: VOC2007,
LabelMe, Caltech, and SUN09, containing 10,729 images
in 5 classes. OfficeHome [48] consists of four domains:
Art, Clipart, Product, Real, containing 15,588 images in
65 classes. ImageNet-C comprises corrupted images in 15
types of corruption. We use the highest level of corruption
(i.e. severity 5).

B.3.
We present the implementation details of our experi-

ments. Following [14], we partition the data from each do-
main into training and validation splits of 80% and 20%,
respectively, utilizing the larger split for training and the
smaller one for model selection. Our training approach for
ERM adheres to the hyperparameters specified by [52], in-
corporating a dropout rate of 0.1 and a weight decay of
10

→2. The learning rate is 5 → 10
→6 for PACS and VLCS,

and 10
→5 for OfficeHome.

For all baseline methods except for DePT, we use their
official implementation2 3 4. For the implementation of
DoPrompt, we set the prompt length to 4, with the coeffi-
cient ω explored over the set {0.1, 1, 10}. The M parameter
for T3A is chosen from {1, 5, 20, 50, 100,N/A}, while the
configuration for Tent is determined from combinations of
{0.1, 1.0, 10.0} and {1, 3}. For DePT, we implement DePT-
Group with M = 4 stages and 50 prompts, adhering to the
same hyperparameters specified for ImageNet-C in [11].

In the single-source scenario, the model is trained on one
domain and then adapted to another. The average accuracy
is calculated across all 12 domain pairings for each trial.
In the multi-source setting, one domain is designated as the
target while the remaining three serve as sources.

B.4.
In this section, we present the comprehensive outcomes

in Tables 2 and 3. The experiments were conducted us-
ing three different seeds {0, 1, 2} within the DomainBed
framework. Tables 6, 8, and 10 display average results from
three rounds for each source-target pair on PACS, VLCS,
and OfficeHome, respectively, in the single-source setting.
Similarly, Tables 7, 9, and 11 show the average results
across three rounds for each target domain on PACS, VLCS,
and OfficeHome in the multi-source setting.

B.5.

OT-VP implicitly reduces prediction entropy. Consis-
tent with prior research [49], there’s an observed correla-
tion between prediction entropy and accuracy—lower en-
tropy often signifies more accurate and confident predic-

2https://github.com/DequanWang/tent
3https://github.com/matsuolab/T3A
4https://github.com/zhengzangw/DoPrompt

https://github.com/DequanWang/tent
https://github.com/matsuolab/T3A
https://github.com/zhengzangw/DoPrompt


Figure 5. Prediction entropy across TTA Algorithms in Single-
Source and Multi-Source settings on PACS. In both settings, OT-
VP demonstrates a marked reduction in entropy, outperforming
Tent-C and Tent-BN, which target entropy minimization directly.

tions. Unlike traditional approaches that explicitly target
entropy reduction by adjusting model parameters [42, 49],
OT-VP achieves this indirectly through the strategic appli-
cation of Optimal Transport. This involves leveraging a cost
metric that encompasses both features and labels 7, aiming
to align the target distribution more closely with the source
distribution, thereby enhancing model confidence near the
decision boundary. This alignment is visually supported by
representations such as those depicted in Fig. 3, a t-SNE
visualization for source A and the target C (A ↑ C) within
the PACS dataset.

A comparative analysis of prediction entropy among
ERM, Tent-C, Tent-BN, and OT-VP—illustrated in Fig.
5—demonstrates that OT-VP can significantly lower en-
tropy through the refined optimization of prompts. Re-
markably, it does so even when compared with methods
like Tent-C and Tent-BN, which pursue entropy minimiza-
tion directly. It’s important to note that the improvements
achieved by Tent-C and Tent-BN result from carefully bal-
ancing accuracy and entropy reduction when selecting their
hyperparameters.

Algo. A C P S

ERM

A - 64.5 98.9 56.4
C 83.9 - 89.6 69.2
P 74.2 44.4 - 34.1
S 50.8 58.4 49.5 -

DoPrompt

A - 64.6 98.5 56.5
C 84.1 - 90.1 74.0
P 75.6 46.2 - 35.2
S 46.4 55.0 45.1 -

Tent-C

A - 64.6 98.9 56.3
C 83.9 - 89.6 69.0
P 74.4 44.5 - 33.7
S 50.4 58.3 49.0 -

Tent-BN

A - 71.9 98.9 66.6
C 84.9 - 91.3 71.7
P 78.0 56.0 - 41.8
S 56.3 62.9 47.5 -

T3A

A - 70.2 98.6 67.9
C 86.3 - 94.4 71.1
P 80.2 53.9 - 35.9
S 69.0 69.9 56.9 -

DePT

A - 70.1 98.4 64.4
C 83.9 - 90.1 69.3
P 76.6 49.7 - 36.1
S 51.4 63.4 52.3 -

OT-VP-B

A - 76.7 98.3 66.8
C 84.4 - 92.2 69.8
P 77.8 56.8 - 63.9
S 44.7 58.1 40.4 -

OT-VP

A - 81.8 99.0 72.2
C 84.4 - 92.6 69.5
P 80.4 64.3 - 67.2
S 56.0 64.6 50.5 -

Table 6. Single-Source Full Results on PACS in Table 2

Algo. A C P S Gain
ERM 91.3 82.3 98.9 75.6 87.0
DoPrompt 91.4 81.8 99.5 77.1 87.5
Tent-C 91.6 82.7 98.9 75.7 87.2
Tent-BN 91.1 82.4 98.3 76.8 87.2
T3A 91.5 81.8 99.0 77.4 87.4
DePT 91.1 81.7 99.2 77.3 87.3

OT-VP-B 91.2 81.8 99.4 77.4 87.3
OT-VP 92.0 83.0 99.2 76.4 87.7

Table 7. Multi-Source Full Results on PACS in Table 3



Algo. C L S V

ERM

C - 50.7 47.9 47.0
L 62.9 - 55.8 63.1
S 67.5 59.9 - 67.7
V 96.5 66.1 80.3 -

DoPrompt

C - 53.4 50.0 50.5
L 71.7 - 57.8 70.1
S 67.8 62.5 - 66.2
V 98.6 62.0 78.8 -

Tent-C

C - 50.4 48.3 47.0
L 70.3 - 55.8 63.2
S 67.2 59.8 - 67.9
V 96.5 66.0 88.2 -

Tent-BN

C - 38.3 46.9 52.7
L 50.0 - 42.7 49.9
S 60.9 62.3 - 69.3
V 85.9 66.0 77.5 -

T3A

C - 51.8 52.1 54.3
L 83.6 - 62.7 64.3
S 71.1 60.5 - 67.4
V 97.3 66.8 80.3 -

DePT

C - 54.6 50.8 48.5
L 78.4 - 56.4 64.1
S 68.4 61.2 - 67.6
V 96.7 67.1 80.2 -

OT-VP-B

C - 55.7 50.0 47.0
L 73.1 - 56.4 60.7
S 67.1 60.8 - 67.3
V 96.8 68.4 79.1 -

OT-VP

C - 59.9 51.3 48.9
L 90.8 - 56.3 63.8
S 69.6 64.2 - 68.8
V 96.8 69.3 80.8 -

Table 8. Single-Source Full Results on VLCS in Table 2

Algo. C L S V Gain
ERM 96.5 65.5 75.2 76.7 78.5
DoPrompt 98.2 67.8 75.3 79.9 80.3
Tent-C 97.7 65.2 75.3 76.9 78.8
Tent-BN 86.3 66.2 68.8 72.6 73.5
T3A 97.3 65.6 78.0 79.3 80.0
DePT 96.6 69.2 76.7 77.8 80.1

OT-VP-B 96.8 71.9 75.2 76.9 80.2
OT-VP 96.8 73.1 76.8 77.0 80.9

Table 9. Multi-Source Full Results on VLCS in Table 3

Algo. A C P R

ERM

A - 54.3 71.4 77.0
C 67.4 - 70.0 73.2
P 62.9 47.8 - 78.9
R 70.3 49.2 78.5 -

DoPrompt

A - 52.1 71.7 79.0
C 67.4 - 71.7 75.5
P 66.8 47.8 - 79.0
R 72.2 48.8 79.6 -

Tent-C

A - 54.5 69.9 76.9
C 66.9 - 69.6 73.6
P 62.9 47.9 - 78.6
R 71.0 47.1 79.9 -

Tent-BN

A - 56.7 70.5 77.5
C 67.9 - 70.4 72.9
P 65.4 48.6 - 79.1
R 72.8 49.5 79.9 -

T3A

A - 55.1 71.2 76.6
C 67.9 - 71.5 74.8
P 67.1 48.7 - 80.3
R 72.9 49.8 80.9 -

DePT

A - 54.9 70.2 75.9
C 68.1 - 70.2 73.5
P 64.7 48.6 - 79.2
R 71.0 49.6 79.1 -

OT-VP-B

A - 55.1 70.5 75.0
C 65.8 - 69.4 73.1
P 64.6 49.1 - 77.4
R 71.1 52.1 79.6 -

OT-VP

A - 55.0 71.4 76.9
C 67.6 - 70.1 73.6
P 68.7 49.7 - 79.9
R 71.3 52.2 80.8 -

Table 10. Single-Source Full Results on OfficeHome in Table 2

Algo. A C P S Gain
ERM 73.8 57.3 80.3 83.0 73.6
DoPrompt 73.4 58.8 81.7 84.8 74.7
Tent-C 73.5 57.3 80.4 83.2 73.6
Tent-BN 73.5 58.8 81.9 84.0 74.6
T3A 74.2 58.3 81.8 84.6 74.7
DePT 73.9 59.3 82.2 83.7 74.8

OT-VP-B 74.0 58.9 80.7 83.5 74.3
OT-VP 74.2 59.6 82.3 84.1 75.1

Table 11. Multi-Source Full Results on OfficeHome in Table 3
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