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1. Detect Object Presence

1.1. Local Peak Search Algorithm

We use Algorithm 1 to find local peaks. In this algo-
rithm, the input includes s num, which represents the num-
ber of slices we aim to create, and P.d which represents the
value of the data point in coordinate d. The output, however,
is the list of the range where the detected peaks are located.
In Algorithm 1, we first get the statistics of the number of
points that fall into the s num slices, and the edge of each
slice (lines 2 to 4). Then, we iterate through the slices with
the given stride and find the local peaks within each stride
range lines 6 to 8.

Algorithm 1: Peak search
Input : s num,P.d, stride
Output: l range

1 l range = ∅
2 max, min = get max min value(P.d)
3 value range = max - min
4 l count, l bin edge = get histogram(value range,

s num)
5 for i← stride to |l count| − 1− stride do
6 idx = get idx of max value(l count[i−

stride, i+ stride]);
7 range =

[l bin edge[idx], l bin edge[idx+ stride]];
8 l range.add(range);
9 return l range

1.2. Time complexity analysis of Density Peaks base
Solution

For the proposed method, we analyze the efficiency of
each step: For slicing, the complexity is O(|P |). For peak
searching, the complexity is O(m+ n), where m and n are
the numbers of slices in the x and y axes respectively. To de-
tect objects by checking crossing slices in the x and y axes,
the complexity is O(m × n). Thus, the overall complexity
is O(|P |) + O(m + n) + O(m × n). Due to m and n are
very small compared to |P |, the complexity is dominated by
|P | and is O(|P |).

1.2.1 Data-driven parameter study

In order to implement this method effectively, a detailed pa-
rameter study is essential. The key parameters include m,
n (the number of slices in x and y axes respectively), as
well as stidex and the stridey for the peak searching. Due
to variations in point clouds collected by different LiDAR
devices, which cause variations in resolutions and viewable
ranges, these parameters must be derived from the training
data.

Within the point cloud, various types of objects are
present, each associated with a bounding box. To deter-
mine m and n, we leverage the following information from
the dataset: For each object category, we get the average
number of unique points along the x and y axes. Sub-
sequently, we derive the minimum and maximum values
across all object categories for both dimensions, denoted as
ucominX , ucomaxX , ucominY and ucomaxY .

The objective of our slicing process is two-fold: (1) Ac-
curately detecting the appearance of an object, requiring
slices to be neither too small nor too large. (2) Ensuring
complete object detection and avoiding partial object reten-
tion, necessitating an appropriate selection of stirde.

We dynamically adjust m, n, stridex and stridey based
on the point cloud P . Let ucPX and ucPY denote the unique
number of points in the x dimension and the y dimen-
sion of p. Then, we have m = ucPX/ucominX , n =
ucPY /uc

o
minY , stidex = ucomaxX/ucominX , and stridey =

ucomaxY /uc
o
minY . Intuitively, the slicing process should en-

compass the smallest object, while the stride ensures that
even larger objects are effectively covered.

1.3. Prepare Training Data for Naı̈ve Bayes

In Section 3.3.1, to create the Naı̈ve Bayes model, we
need the statistics of the region containing objects. We use
Algorithm 2 to verify whether a region r contains objects.
From the labeled training data, we can obtain the bounding
box of each labeled object. Each bounding box comprises
8 corner points, denoted as Pcorner = p1, p2, ..., p8. In Al-
gorithm 2, the inputs contain the set of labeled bounding
boxes, denoted as Pobj , the slice range in the X-axis which
is denoted as range x, and the slice range in the Y-axis
which is denoted as range y. In this algorithm, we iterate
each bounding box (denoted as PC) and check whether any
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part of the object overlaps with the bounding box (lines 3 to
6). If any overlap is detected, then we recognize the region
r contains the object (lines 8 to 9).

Algorithm 2: check object existence
Input : Pobj , range x, range y

1 isObj = False;
2 for PC ∈ Pobj do
3 max x,min x = get max min value(PC .x);
4 max y,min y = get max min value(PC .y);
5 check x = (range x[0] ≤ max x &

range x[1] ≥ min x);
6 check y = (range y[0] ≤ max y &

range y[1] ≥ min y);
7 if check x & check y then
8 isObj = True;
9 break;

10 return isObj;

1.4. Naive Bayes Explaination

P (yobjr |r.dx, r.dy) =
P (yobjr )× P (r.dx, r.dy|yobjr )

P (r.dx, r.dy)
(1)

To understand the above equation, P (yobjr |r.dx, r.dy)
represents the probability that region r is categorized as
an object, given the point density of slices along the x
and y axes where r locates (which is denoted as r.dx and
r.dy). P (yobjr ) represents the probability of region r being
recognised as containing objects. This data can be obtained
from the training data. P (r.dx, r.dy|yobjr ) = P (r.dx|yobjr )×
P (r.dy|yobjr ). This probability represents the probability
of the appearance of the density in dx and dy under the
condition that region r contains objects,. P (r.dx, r.dy) =
P (r.dx) × P (r.dy) represents the probability of density
dx and dy appearing in region r respectively. Those two
probabilities are constants and can be obtained by statis-
tics of the dataset, so we can infer P (yobjr |r.dx, r.dy) ∝
P (yobjr ) × P (r.dx, r.dy|yobjr ). For the classification task,
we use ŷr = argmaxyP (yobjr )× P (r.dx, r.dy|yobjr ).

2. Study of Datasets
2.1. Object Distribution

In Figure 1, we present the appearance rate of objects in
each region based on the training data from KITTI. Light
colors indicate regions where objects are less likely to ap-
pear, while dark colors signify a high likelihood of object
presence. Notably, more than half of the regions never fea-
ture object appearances. Due to the sparsity of the point
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Figure 1. Probability of object appearance at regions

cloud, when considering the statistics for the entire train-
ing set, only 1% of the regions contain objects. Conse-
quently, the training data for our binary classification task
exhibits bias, contributing to the poor performance of the
MLP-based method.

2.2. Lower Bound of Sample Rate

We leverage two key statistical attributes from the
dataset: the average count of points for each category of a
single object, denoted as ci.points, and the occurrence fre-
quency of each object category within a given point cloud,
denoted as ci.freq. The minimum required number of
points to be sampled, denoted as |P |min, is computed as
the summation of ci.points × ci.freq for each category
c ∈ c1, c2, .... Subsequently, we establish the lower bound
of the sample rate as ratelower = |P |min/|P |avg . Table 1
shows an example of statistics of the KITTI dataset. Using
this approach, we estimate that the lower bound sample rate
for the KITTI dataset is approximately 10%, while for the
nuScenes dataset, it is around 7%.

3. More Experiment Results
3.1. Study of Instance Recall Rate

Analysing Categorical mAP with Instance Recall Rate.
We introduce a concept called Instance Recall Rate by refer-
ing [2], which is the rate of points retained to depict the ob-
ject. In Figure 2 and 3 at range of sample rates, we demon-
strate the Instance recall rate for Part-A2 with KITTI. By
reading Figures 2 and 3 with 4 and 5 in conjunction, we can
find that a higher instance recall rate would lead to a higher
mAP for most cases.

Among all the compared methods, our proposed sta peak
and sta bayes exhibit notably high instance recall rates com-
pared to all baselines. This observation provides insight into
why these methods excel in terms of effectiveness. Addi-
tionally, in the range of lower sampling rates from 8% to
4%, sta bayes retains a more substantial number of object
points compared to sta peak, as indicated in Figures 3.

It is worth noting that, although FPS shows exceptional
performance at high sampling rates, the instance recall rate



Table 1. Statistics of KITTI

Category Car Pedestrian Cyclist Truck Van Tram Person Sitting Misc

avg points/obj 326 207 141 412 555 584 205 429
avg obj/pc 3.8 0.6 0.2 0.16 0.4 0.07 0.04 0.16
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Figure 2. Categorical Instance Recall rate with Part-A2 on KITTI (high sample rate)
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Figure 3. Categorical Instance Recall rate with Part-A2 on KITTI (low sample rate)

is the lowest. This highlights a valuable lesson: to effec-
tively support downstream object recognition tasks, pre-
serving both instance points and feature-rich points holds
equal significance.

3.1.1 Comparison with Trained MLP (Q5)

In this section, we experimented with performing the Object
Presence Detection with deep learning methods. We com-
pared our proposed methods with deep learning-based train-
ing. We trained two separate models with different strate-
gies: point-level training and region-level training.
Point-level training. We utilized PointNet [1] to extract
point features, and we trained the binary classification
head with three fully connected layers followed by ReLU.
We compared the performance of the point-level trained
model with our non-learning density peak-based method,

as shown in Table 3. The results revealed that the MLP-
based method struggles to outperform the non-learning den-
sity peak method. When the sample rate decreased below
10%, the difference became more obvious, which indicated
the effectiveness of the non-learning density peak method.

Region-level training. Table 2 demonstrated the compar-
ison of region-level based training results. By following
the design of the Naı̈ve Bayes solution, we utilized region
density as the feature to train a model for the binary clas-
sification of regions (which is Region-level MLP). We also
used Fast Point Feature Histograms (FPFH) as a feature ex-
tractor for the region, considering MLP was more sensitive
to features compared to Naı̈ve Bayes. We trained another
model that combined both region density and FPFH fea-
ture (which is MLP+FPFH). According to the results, Naı̈ve
Bayes showed a great advantage compared to MLP-based
methods. Although incorporating features from FPFH re-



Table 2. Comparison of Region-level Trainings

Rate sta bayes Region-level MLP MLP+FPFH

Easy Med Hard Easy Med Hard Easy Med Hard

50% 76.98 62.25 58.59 71.08 56.67 53.16 70.86 55.80 51.98
30% 69.52 53.88 50.53 59.93 46.01 42.74 61.16 46.04 42.21
10% 46.99 32.67 30.05 28.91 19.69 17.71 31.05 20.73 18.56
6% 33.69 22.64 20.34 16.54 10.93 9.05 15.64 10.19 8.69
2% 10.49 6.42 5.33 1.70 1.21 0.97 1.73 1.30 1.04

Table 3. Comparison of Point-level Trainings

Rate sta peak Point-level MLP

Easy Med Hard Easy Med Hard

50% 74.26 60.49 56.96 71.45 56.55 53.16
30% 66.65 53.89 49.34 60.97 46.46 42.74
10% 44.33 32.41 28.81 29.74 20.01 17.71
6% 29.50 20.92 17.89 16.22 10.71 9.05
2% 8.23 5.15 4.16 1.89 1.23 0.97

sults in a slight performance increase, the improvement was
not substantial. This highlighted the robustness and efficacy
of the Naı̈ve Bayes method for regional-level categoriza-
tion.

Table 4. Study of Different Strategies

Strategy Acc (%) Precision (%)

Naı̈ve Bayes 97.0 60.4
MLP 99.3 4.5
MLP + FPFH 99.4 4.5

Analysis. As shown in Table 4, we analyzed the reason
for the terrible performance of MLP-based training by look-
ing into the accuracy and precision of the prediction results.
For the region-based method, both region-level MLP, and
region-level MLP+FPFH, the accuracy was notably high,
while precision revealed a different story with an extra low
value (with 4.5%). Only Naı̈ve Bayes achieved a relatively
high precision (with 60.4%). The disparity between accu-
racy and precision could be attributed to the utilization of
cross-entropy loss during model training. The scenario of
high accuracy coupled with low precision often arose when
the training data exhibited an extraordinarily uneven dis-
tribution. For detailed insights into the distribution of the
training data, please refer to Section 2.1 in this report.

3.2. Results on More Sample Rates

Figure 4, Figure 5, Figure 6, and Figure 7 demonstrate
the results for a wider range of sample rates.
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Figure 4. Categorical mAP with Part-A2 on KITTI (with higher sample rate)
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Figure 5. Categorical mAP with Part-A2 on KITTI (with lower sample rate)
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Figure 6. Categorical mAP with SECOND on KITTI (with higher sample rate)
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Figure 7. Categorical mAP with SECOND on KITTI (with lower sample rate)
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