
Supplements: Identity Curvature Laplace Approximation for Improved
Out-of-Distribution Detection

Table 1. Computational costs of ICLA and LLLA. The results for
initialization are reported in seconds per initialization and seconds
per 1000 batches of size 64 for the inference stage.

Inference
CIFAR-10 CIFAR-100 ImageNet

EF 4.69 10.81 10.68
GGN 4.77 10.51 10.56
KFAC 5.11 30.22 29.31
ICLA 4.65 10.70 10.41

Initialization
CIFAR-10 CIFAR-100 ImageNet

EF 19.71 20.68 21.38
GGN 19.28 32.6 37.07
KFAC 19.38 21.44 20.46
ICLA 0.02 0.02 0.05

A. Marginal Likelihood Algorithm
We present a detailed definition of the

marginal_likelihood function in Algorithm
1.

Algorithm 1 Marginal Likelihood

Input: Dataset D = {xi, yi}Ni=1, neural network f , Hes-
sianH, learning rate α, number of epochs T .

Output: Prior precision λ for Equation 7.
1: Initialize λ
2: for t = 1, . . . , T do
3: ht ← ∇λ2 log(p(D|f, λ2))
4: λ2

t ← λ2
t−1 + αht

5: end for
6: return λ

B. Computational performance comparison
We report computational performance comparison in Ta-

ble 1. All the comparisons are conducted on a single A100
80GB GPU. It can be seen that our ICLA implementation
doesn’t impose any additional computational overhead on

inference and takes near zero time for initialization (Algo-
rithm 1).

C. Discussion on the connection of ICLA and
NECO

NEural Collapse-based Out-of-distribution (NECO [2])
has a theoretical framework based on class separability and
analyzing eigenvalues of covariance matrix in embedding
space. Although some of these aspects might seem related,
our analysis method focuses on connecting class separabil-
ity with the Fisher matrix structure and model curvature,
which allows us to put our approach into the field of Laplace
approximation and Bayesian methods.

D. Calibration Metrics
In this section, we list performance measurements for

calibration. Firstly, let Bt be a batch of samples, whose con-
fidences lie in the interval ( t−1

T , t
T ], where T is the number

of bins we split the prediction by and m is the bin index.
We define accuracy and confidence as

acc(Bt) =
1

|Bt|
∑
i∈Bt

I(f(xi) = yi). (1)

conf(Bt) =
1

|Bt|
∑
i∈Bt

pi. (2)

D.1. Expected Calibration Error

The expected calibration error (ECE) can be estimated
as

ECE(Bt) =

T∑
t=1

|Bt|
N
|acc(Bt)− conf(Bt)| (3)

where N is the number of samples.

D.2. Negative Log-Likelihood

Negative log-likelihood typically coincides with cross-
entropy and is computed as

NLL = −
N∑
i=1

log(f(xi). (4)
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D.3. Brier Score

Brier score is another calibration measure and is ex-
pressed as

Brier =
1

N

N∑
i=1

(f(xi)− yi)
2. (5)

E. Details on Hessian Approximations
In this section, we elaborate on Hessian approximations

and their formulations.

E.1. Generalized Gauss-Newton Matrix (GGN)

G ≜
N∑
i=1

J(xi)(∇2
θ log p(yi|fθ|θMAP)J(xi)

T , (6)

where J(x) ≜ ∇2
θ log(p(D|θ))|θMAP is the Jacobian ma-

trix.

E.2. K-FAC

In some setups, Fisher might still require solid com-
putational resources. Another popular factorization is the
Kronecker-factored approximate curvature (K-FAC). It fac-
torizes layer-wise Fisher as a Kronecker product of smaller
matrices under the assumption of independence of layer-
wise weights.

Given a layer with N hidden units, denote hn as the n-
th hidden vector and gn as the log-likelihood gradient w.r.t.
hn. Then Fisher can be approximated as

Fn ≈ E(hn−1h
T
n−1)⊗ E(gngTn ). (7)

F. Embeddings Visualization
In this section, we visualize the embeddings for CIFAR-

10, CIFAR-100, C100-5-SP and C100-5-NSP in Figure 1.

G. Additional Calibration Details
Here, we provide a precise comparison between LLLA

variations and ICLA for calibration in Table 3.

H. Prior Precision Values
We report the obtained prior precision λ values in Sec-

tion 4.2: 2.76 for CIFAR-10 and 3.06 for CIFAR-100.

I. Prior Precision Impact on OOD Detection
We demonstrate the relation between the value of prior

precision λ and OOD detection AUROC in Table 2. As
can be seen, prior precision values affect the OOD detection
performance. It makes prior precision optimization sensible
in our algorithm.

Table 2. OOD detection AUROC depending on prior precision
value λ for CIFAR-10 dataset.

λ Near OOD Far OOD
1 90.31 92.20
3 89.89 91.76
5 89.06 91.08
7 88.84 90.86



Figure 1. Visualizations of feature embeddings. (First) CIFAR-10. (Second) CIFAR-100. (Third) C100-5-NSP. (Fourth) C100-5-SP.
CIFAR-10 and C100-5-SP present more separability, as the clusters of classes overlap less. ICLA performs better on more separable cases,
showing the connection between curvature and data separability. See Section 5.3 for details.

Table 3. Precise calibration results between LLLAs and ICLA.

Dataset Metric LLLA (GGN) LLLA (EF) LLLA (K-FAC) ICLA

CIFAR-10
ECE 1.23 ± 0.21 10.80 ± 7.10 2.75 ± 0.29 15.15 ± 4.53
NLL 1.53 ± 0.01 1.62 ± 0.05 1.51 ± 0.03 1.59 ± 0.04
Brier 0.07 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 0.10 ± 0.01

CIFAR-100
ECE 19.11 ± 1.69 61.84 ± 4.08 6.47 ± 0.86 65.11 ± 0.54
NLL 4.08 ± 0.01 4.47 ± 0.03 3.89 ± 0.02 4.47 ± 0.03
Brier 0.37 ± 0.01 0.75 ± 0.05 0.32 ± 0.01 0.80 ± 0.01

ImageNet-200
ECE 3.54 ± 0.02 4.78 ± 0.24 1.77 ± 0.18 4.77 ± 0.26
NLL 3.53 ± 0.01 3.91 ± 0.01 3.11 ± 0.01 3.94 ± 0.01
Brier 0.21 ± 0.01 0.22 ± 0.01 0.20 ± 0.01 0.22 ± 0.01
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