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1. Proof of Proposition 1
Proposition 1. Let an edge e1 “ pγ1, θ1q in image 1 cor-
respond to an edge e2 “ pγ2, θ2q in image 2 where the
relative pose of the camera is pR21, T21q. Then the corre-
sponding edge in a third view e3 “ pγ3, θ3q with relative
pose to camera 1 pR31, T31q is given by
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where b3 “ r0, 0, 1sT and ti “ rcospθiq, sinpθiq, 0sT .

Proof. Consider a triplet pair of correspondences (γ1, γ2,
γ3) in the first, second, and third cameras, respectively, re-
lated by pR21, T21q and pR31, T31q, i.e.,
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ρ2γ2 “ ρ1R21γ1 ` T21,

ρ3γ3 “ ρ1R31γ1 ` T31,

(3)
(4)

where ρ1, ρ2, and ρ3 are the unknown depths at γ1, γ2, and
γ3, respectively. Isolating out ρ1 and ρ2 by dot product with
b3 on both sides of Equation 3, i.e.,
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can then solve for depths ρ1 and ρ2 in terms of R21, T21,
γ1, and γ2.
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Similarly, the depth ρ3 can be isolated from Equation (4) as
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which gives
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Plugging ρ1 obtained from Equation (7), resulting in an ex-
pression for γ3 in terms of γ1, γ2, and relative poses.
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Let t1, t2, t3 be the unit tangent vectors at γ1, γ2, and

γ3, respectively. In the first camera coordinate, γ1 and t1
are on the same plane whose normal vector is n1 “ γ1 ˆ t1
and similarly, n2 “ t2 ˆγ2 is the normal vector of the plane
spanned by γ2 and t2 in the second camera coordinate. They
can be related by first expressing the two tips of n1 and n2

as (Γ1, Γ1 ` n1) and (Γ2, Γ2 ` n2), respectively, so that
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Γ2 “ R21Γ1 ` T21,
Γ2 ` n2 “ R21 pΓ1 ` n1q ` T21.

(11)
(12)

Subtracting Equation 11 by Equation 12 gives the transfor-
mation of n1 in the first camera coordinate to n2 in the sec-
ond camera coordinate,

n2 “ R21n1, (13)

or,
γ1 ˆ t1 “ RT
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Observe that the 3D tangent T1 in the first camera coordi-
nate arising from pγ1, t1q and pγ2, t2q is effectively the in-
tersection of the two planes, Figure 1, i.e., T1 is orthogonal
to both γ1 ˆ t1 and RT

21 pt2 ˆ γ2q, we have

ϵT1 “
pγ1 ˆ t1q ˆ RT

21 pt2 ˆ γ2q

} pγ1 ˆ t1q ˆ RT
21 pt2 ˆ γ2q }

, ϵ “ ˘1. (15)

1



Figure 1. The 3D tangent T1 in the first camera coordinate lies in the in-
tersection of the two planes spanned by (γ1, t1) and (γ2, t2), respectively.
T1 is thus orthogonal to the normal vectors γ1 ˆ t1 and RT

21pt2 ˆ γ2q.

From Equation 13, the unit vector T1 in the first cam-
era coordinate can be transformed to T3 in the third camera
coordinate via R31, i.e.,
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In the third camera coordinate, let (Γ3, Γ3 `ϵT3) be the two
tips of the vector ϵT3 so that the projection of ϵT3 is
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Normalizing t3 gives
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Plugging ϵT3 from Equation 16 to Equation 18 solves the
expression for t3. ■

The above proof gives the following two corollaries.

Corollary 1. Given a 3D unit tangent vector T1 starts from
point Γ1 in the first camera frame, and two cameras whose
poses are related by pR21, T21q such that the 3D point Γ1

in the second camera is Γ2 “ R21Γ1 ` T21, then the 3D
tangent vector T1 in the second camera is T2 “ R21T1.

Corollary 2. Given a 3D unit tangent vector T associated
to Γ which arises from γ on the image, the projected unit
tangent vector t is

t “
T ´ peT3 T qγ

||T ´ peT3 T qγ||
(19)

2. Mapping Epipolar Angles in Two Views

Let Γ be a 3D point in space arising from a pair of point
correspondences γ̂1 and γ̂2 in pixels on two images, Fig-
ure 2, where the corresponding epipoles q1 and q2 (shown
in green) have epipole angles θ1 and θ2, respectively. The
locations of the point γ̂1 and γ̂2 can be expressed in terms
of the epipole and the angle, i.e.,
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where τ1 and τ2 are the distances between the epipoles and
the points. Let F be the fundamental matrix describing the
relative pose of the two cameras, so that the epipolar con-
straint

γ̂T
2 F γ̂1 “ 0, (21)

relates the two epipole angles,
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Expanding the equation, we get

pf11 ` f21 tanpθ2qq ` pf12 ` f22 tanpθ2qq tanpθ1q “ 0,
(24)

so that

tanpθ2q “ ´
f11 ` f12 tanpθ1q

f21 ` f22 tanpθ1q
. (25)

Figure 2. The epipole angles θ1 and θ2 can be related by the fundamental
matrix describing the relative pose of the two views.
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Figure 3. Qualitative comparisons between 3D curve sketch [1], NEF [4], EMAP [3], and 3D edge sketch on the ABC-NEF dataset [2]. 3D edge sketch
provides comparable performance against other existing methods (Top Row), and outperforms others in some challenging cases (Bottom Row).

3. Additional Qualitative Comparisons on the
ABC-NEF Dataset

Figure 3 shows additional qualitative comparisons of 3D
Edge Sketch against the baseline approaches. Observe that
NEF, EMAP, and 3D Curve Sketch exhibit gaps in their 3D
reconstruction while 3D Edge Sketch provides a complete,
high recall 3D edges.

4. Precision-Recall Curves of 3D Curve Sketch
vs 3D Edge Sketch

The precision and recall curves of the proposed 3D edge
sketch presented in the main paper show that (i) 3D edge
sketch is insensitive to the hyperparameters, and (ii) the set-
tings ∆ “ 0.3 pixels, ∆θ “ 15°, and N “ 4 views, result
in optimal performance and are used in all the experiments.
Compared to 3D edge sketch, varying the hyperparameters
of 3D curve sketch [1] on the ABC-NEF dataset [4], Fig-
ure 4 where the number of validation views supporting a
hypothesis curve pair is N “ 4 views, reveals that 3D
curve sketch is also not sensitive to hyperparameters. In
addition, the precision is generally high, but its recall is
low compared to 3D edge sketch, showing that a lot of 3D
curve points are missing in the reconstruction, creating gaps
which on the other hand 3D edge sketch does not have.
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