
DiffMesh: A Motion-aware Diffusion Framework for Human Mesh Recovery
from Videos (Supplementary Material)

1. Overview
The supplementary material is organized into the follow-

ing sections:

• Section 2: More related Work and implementation de-
tails.

• Section 3: Mathematical proof and more experiments
about the number of input frames, the two-stream
transformer network, initial distributions, and the aux-
iliary loss.

• Section 4: More human mesh visualization.

• Section 5: Broader impact and limitation

2. More Related Work and Implementation
Details

2.1. Related Work

The majority of methods [4, 10, 13, 14, 31, 37–39] for
HMR rely on a parametric human model, such as SMPL
[21], to reconstruct the mesh by estimating pose and shape
parameters. As a fundamental HMR work, SPIN [13] com-
bines regression and optimization in a loop, where the re-
gressed output serves as better initialization for optimiza-
tion (SMPLify). METRO [20] is the first transformer-
based method that models vertex-vertex and vertex-joint in-
teraction using a transformer encoder after extracting im-
age features with a CNN backbone. HybrIK [17] and
HybrIK-X [15] present novel hybrid inverse kinematics ap-
proaches that transform 3D joints to body-part rotations via
twist-and-swing decomposition. Lin et al. [19] propose a
one-stage pipeline for 3D whole-body (body, hands, and
face) mesh recovery. PyMAF [36] and its extension work
PyMAF-X [35] capitalize on a feature pyramid to rectify
predicted parameters by aligning meshes with images, ex-
tracting mesh-aligned evidence from finer-resolution fea-
tures. CLIFF [18] enhances holistic feature representation
by incorporating bounding box information into cropped-
image features. It employs a 2D reprojection loss consid-
ering the full frame and leverages global-location aware su-
pervision to directly predict global rotation and more accu-

rately articulated poses. ReFit [29] proposes a feedback-
update loop reminiscent of solving inverse problems via
optimization, iteratively reprojections keypoints from the
human model to feature maps for feedback, and utilizes a
recurrent-based updater to refine the model’s fit to the im-
age. HMR2.0 [7] develops a system that can simultaneously
reconstruct and track humans from video, but only reports
the frame-based results for the HMR task without consid-
ering temporal information. Foo et al. [6] first introduce a
diffusion-based approach for recovering human mesh from
a single image. The recovered human mesh is obtained by
the reverse diffusion process. However, when applied to
video sequences, these image-based methods suffer from
severe motion jitter due to frame-by-frame reconstruction,
making them unsuitable for practical use.

Compared to image-based HMR methods, video-based
methods [32–34] utilize temporal information to enhance
motion smoothness from video input. In addition to the
methods [3, 12, 22, 23, 30, 40] introduced in the main paper,
there are several other noteworthy approaches for video-
based HMR. Kanazawa et al. [11] first propose a convolu-
tional network to learn human motion kinematics by pre-
dicting past, current, and future frames. Based on [11],
Sun et al. [26] further propose a self-attention-based tem-
poral model to improve performance. DND [16] utilizes
inertial forces control as a physical constraint to reconstruct
3D human motion. GLoT [25] adopts a novel approach by
decoupling the modeling of short-term and long-term de-
pendencies using a global-to-local transformer. PMCE [32]
follows a two-step process, where it first estimates 3D hu-
man pose and then regresses the mesh vertices through a
co-evaluation decoder that takes into account the interac-
tions between pose and mesh.

2.2. Datasets

3DPW [27] is a dataset that captures outdoor and in-the-
wild scenes using a hand-held camera and a set of inertial
measurement unit (IMU) sensors attached to body limbs.
The ground-truth SMPL parameters are computed based
on the returned values. This dataset includes 60 videos of
varying lengths, and we use the official split to train and
test the model. The split comprises 24, 12, and 24 videos

1



for the training, validation, and test sets, respectively. The
MPJPE, PA-MPJPE, MPJVE, and ACC-ERR are reported
when evaluating this dataset.
Human3.6M [9] is a large-scale benchmark for the indoor
3D human pose. It includes 15 action categories and 3.6M
video frames. Following [3, 12, 30], we use five subjects
(S1, S5, S6, S7, S8) for the training set and two subjects
(S9, S11) for the testing set. The dataset is subsampled from
its original 50 fps to 25 fps for both training and evaluation
purposes. When calculating MPJPE and PA-MPJPE, only
14 joints are selected for a fair comparison to the previous
works.
MPI-INF-3DHP [24] is a 3D benchmark that consists of
both indoor and outdoor environments. The training set in-
cludes 8 subjects, with each subject having 16 videos, re-
sulting in a total of 1.3M video frames captured at 25 fps.
The markerless motion capture system is used for provid-
ing 3D human pose annotations. The test set comprises
6 subjects performing 7 actions in both indoor and out-
door environments. Following [3, 12, 30], the MPJPE and
PA-MPJPE are measured on valid frames, which include
approximately every 10th frame, using 17 joints defined
by MPI-INF3DHP. The ACC-ERR is computed using all
frames.
InstaVariety [11] is a 2D human dataset curated by HMMR
[11] , comprising videos collected from Instagram using 84
motion-related hashtags. The dataset contains 28K videos
with an average length of 6 seconds, and pseudo-ground
truth 2D pose annotations are acquired using OpenPose [2].
PoseTrack [1] is a 2D benchmark designed for multi-
person pose estimation and tracking in videos. This dataset
comprises 1.3K videos and 46K annotated frames, captured
at varying fps around 25 fps. There are 792 videos used for
the official train set, which includes 2D pose annotations for
30 frames located in the middle of each video.

2.3. Loss Function

Our DiffMesh relies on the SMPL model [21] to recon-
struct the human mesh. The SMPL model can generate the
body mesh M ∈ RN×3 with N = 6890 vertices by taking
in the predicted pose parameters θ and the shape parameters
β as inputs, which can be expressed as M = SMPL(θ, β).
Once the body mesh M is obtained, the body joints J can be
estimated by applying the predefined joint regression matrix
W , i.e., J ∈ Rk×3 = W ·M , where k represents the num-
ber of joints. We adopt the same loss function as previous
methods TCMR [3].

LHMR = w1∥β − β∗∥+ w2∥θ − θ∗∥+ w3∥J − J∗∥
(1)

where * denote the ground-truth value, w1 = 0.5, w2 = 10,
and w3 = 1000.
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Figure 1. The diffusion model in our baselines

Besides this general loss for mesh recovery, we add addi-
tional auxiliary loss as mentioned in Section 3.4 of the main
paper. Our designed transformer-based diffusion model can
predict the previous conditional feature ĉi−1 given the cur-
rent conditional feature input ci. A MSE loss is applied
between the ground truth ci−1 and predicted ĉi−1:

Laux = ∥ci−1 − ĉi−1∥22 (2)

This auxiliary loss contributes to the refinement of our
transformer-based diffusion model during the training pro-
cess. Thus, the overall loss for our DiffMesh is the sum of
the LHMR and Laux:

Loverall = LHMR + w4Laux (3)

where w4 = 0.01.

2.4. More Details about the Architecture

Diffusion model in our baselines: The architecture
of the diffusion model employed in our baselines is illus-
trated in Fig. 1. It shares similarities with the architecture
within our DiffMesh, featuring two self-attention blocks
designed to capture global dependencies and one cross-
attention block focused on integrating information between
the denoising input xi and the constant conditional feature
c. In the baseline approach, as the conditional feature c re-
mains the same throughout the denoising process, there is
no need to estimate the conditional feature for each sub-
sequent denoising step. Thus, it only return the estimated
noise term ni−1.

Conditional features generation block: Our chosen
backbone to extract features for both our proposed method
and the baselines is ResNet-50 [8] or DSTformer [40].
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Figure 2. Different design choices of the transformer architecture: (a) Only one Self-Attn Block. (b) Two Self-Attn Blocks. (c) Two
Self-Attn Blocks and one Cross-Attn Block.

After extracting features from each frame bi, where i ∈
{1, . . . f}, using the backbone, our goal is to generate N
conditional features to be utilized during the reverse pro-
cess. To achieve this, we pad additional N−f zero features,
bf+1, · · · , bN . Then, we combine them with the existing
features, creating new features b ∈ RN×D, where D repre-
sents the embedded dimension. Subsequently, we apply a
transformer block [5] to model these features and return the
required conditional features denoted as c ∈ RN×D.

3. Mathematical Proof and More Experiments
3.1. Mathematical Proof of modeling human motion

as noise in diffusion model

Our approach draws an analogy between human mo-
tion and noise, treating the motion between adjacent frames
as a structured form of noise. By operating in a high-
dimensional latent space, we capture the complexity of hu-
man motion, where small perturbations (or ”noise”) in this
space can be modeled as Gaussian. This allows us to align
the problem with the core principles of diffusion models.

Following Equation 6 in the main paper, we have

Ex0∼q [− log p(x0)] = Ex0∼q

[
logEx1:T ,y0:T∼q

q(x1:T ,y0:T |x0)
p(x0:T ,y0:T )

]
(4)

Using Jensen’s Inequality, we can bound Eq 4 by moving

the expectation inside the logarithm:

Ex0∼q [− log p(x0)] ≤ Ex0,x1:T ,y0:T∼q

[
log q(x1:T ,y0:T |x0)

p(x0:T ,y0:T )

]
(5)

The forward process in DiffMesh is designed to model
the human motion between adjacent frames as structured
noise. This noise is Gaussian in the latent space, where
the human motion patterns are simplified. We define the
forward process for the latent motion as:

q(mt+1|mt) = N (mt+1;
√

1− βtmt, βtI) (6)

Here mt represents the motion noise at time step t, and
βt controls the level of noise added to the motion between
consecutive frames. This equation models the motion be-
tween frames as Gaussian perturbations in latent space.

We now need to decompose the joint probabilities
q(x1:T , y0:T |x0) and p(x0:T , y0:T ) into their respective
transition probabilities over time t:

The forward process q(x1:T , y0:T |x0) can be written as:

q(x1:T , y0:T |x0) = q(xT |x0)
∏T

t=2 q(xt−1|xt, x0)
∏T

t=0 q(yt|xt)

(7)
Similarly, the reverse process p(x0:T , y0:T ) is:

p(x0:T , y0:T ) = p(xT )
∏1

t=T p(xt−1|xt)
∏0

t=T p(yt|xt) (8)

Next, we focus on deriving the bound based on KL diver-
gence. Substituting the decomposed expressions, we obtain
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two main terms: one for the states x and another for the
observations y

Ex0,x1:T ,y0:T∼q

[
log

q(xT |x0)
∏T

t=2 q(xt−1|xt, x0)

p(xT )
∏1

t=T p(xt−1|xt)

]

+Ex0,x1:T ,y0:T∼q

[
log

∏T
t=0 q(yt|xt)∏0
t=T p(yt|xt)

]
(9)

Each of these terms corresponds to the forward process
(adding Gaussian motion noise) and the reverse process (de-
noising to recover the original human motion).

The final step is to express the result as a sum of KL
divergences. For the forward and reverse processes of both
the states x and the observations y, we can represent this as:

= DKL(q(xT |x0)||p(xT )) + Eq [− log p(x0|x1)]

+

T∑
t=2

DKL(q(xt−1|xt, x0)||p(xt−1|xt))

+

T∑
t=0

DKL(q(yt|xt)||p(yt|xt)) (10)

Here DKL(q(xT |x0)||p(xT )) measures the divergence be-
tween the final denoised human mesh and the actual motion,
and DKL(q(xt−1|xt, x0)||p(xt−1|xt)) measures the diver-
gence at each intermediate step in recovering the motion,
helping to maintain temporal consistency. Thus, we can de-
rive Equation 7 in the main paper.

3.2. Performance on MPI-INF-3DHP dataset

MPI-INF-3DHP
Methods MPJPE ↓ PA-MPJPE ↓ ACC-ERR ↓

VIBE [12] 103.9 68.9 27.3
TCMR [3] 97.6 63.5 8.5

MAED [28] 83.6 56.2 -
MPS-Net [30] 96.7 62.8 9.6

GLoT [25] 93.9 61.5 7.9
DiffMesh (ours) 78.9 54.4 7.0

Table 1. Performance comparison with state-of-the-art methods
on MPI-INF-3DHP dataset. All methods use pre-trained ResNet-
50 [8] (fixed weights) to extract features except MAED.

To conduct experiments on the MPI-INF-3DHP [24]
dataset, we follow the same setting as VIBE [12], TCMR
[3], and MPS-Net [30] . The input features of each frame
are extracted from ResNet-50 [8] without fine-tuning for
fair comparisons. The results are shown in Fig. 1. Our
DiffMesh consistently outperforms previous methods with
significant improvement (more than 5.9 mm ↓ of MPJPE,
1.8 ↓ of PA-MPJPE, and 0.7 ↓ of ACC-ERR). This show-
cases the remarkable performance enhancement achieved

by our approach, highlighting its potential as a state-of-the-
art solution for video-based human mesh recovery across
various datasets and real-world applications.

3.3. Effectiveness of the number of input frames
and additional steps

Following the same setting as previous video-based
methods such as VIBE [12], TCMR [3], and MPS-Net [30],
the number of input frames f is set to be 16. To further
investigate the impact of the number of input frames, we
conduct experiments on the 3DPW dataset given the differ-
ent number of input frames. The results are shown in Table.
2.

In general, the performance can be improved (lower
MPJPE, PA-MPJPE, MPVPE, and ACC-ERR) when the
number of input frames f is increased. Specifically, when
maintaining the total number of steps N at 30 and varying
f from 8 to 16 to 24, the improvements are notable. In our
ablation study, the lowest MPVE, MPJPE, and ACC-ERR
are achieved when f = 32 with total steps of 40.

To strike an optimal balance between efficiency and per-
formance, it’s crucial to seek improved results with a re-
duced total number of steps N . For instance, when f = 16,
the optimal N is determined to be 30, demonstrating com-
parable results to N = 40 at a faster processing speed. Sim-
ilarly, for f = 24, the optimal N is identified as 30 based
on the results.

input frames steps for output
sequence additional steps Total steps MPVE ↓ MPJPE ↓ ACC-ERR ↓

8 7 0 7 89.8 77.9 6.9
16 15 0 15 88.5 77.4 6.5
24 23 0 23 87.6 75.2 6.2
8 7 13 20 88.6 76.9 6.7
16 15 5 20 88.0 77.1 6.5
8 7 23 30 87.4 76.5 6.5
16 15 15 30 86.4 75.7 6.1
24 23 7 30 86.2 74.7 5.9
16 15 25 40 87.1 75.6 6.2
24 23 17 40 86.5 74.7 6.1
32 31 8 40 86.0 74.9 5.8

Table 2. Performance of the different number of input frames and
the number of additional steps on the 3DPW dataset.

3.4. Different design choices of our transformer-
based diffusion model

As introduced in Section 3.3 of the main paper, our pro-
posed transformer-based diffusion model consists of two
self-attn blocks with one cross-attn block (also depicted
in Fig. 2 (c)). Given the input feature x′

i and corre-
sponding conditional feature ci, the transformer-based dif-
fusion model produces the predicted noise mi−1 and the
predicted previous conditional feature ĉi−1. We apply
two self-attention blocks for x′

i and ci separately, then a
cross-attention block is adopted to fuse the conditional fea-
tures with mesh features. To validate the effectiveness, we
compare this design with (a): a self-attention block ap-
plied for the concatenated features; and (b) two two self-
attention blocks for x′

i and ci separately without cross-
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attention block. The results are shown in Table 3. Clearly,
our design (c) in DiffMesh outperforms (a) and (b) for all
evaluation metrics on the 3DPW dataset due to enhanced in-
formation integration using two-stream and cross-attention
fusion design.

3DPW
MPVE ↓ MPJPE ↓ PA-MPJPE ↓ ACC ↓

(a) one self-attn 86.9 76.9 47.5 6.3
(b) two self-attn 87.4 76.4 45.9 6.2

(c) self-attn and cross attn 86.4 75.7 45.6 6.1

Table 3. Ablation study of transformer block design on 3DPW
dataset.

3.5. Effectiveness of the auxiliary loss:

To validate the effectiveness of our proposed auxiliary
loss, we compare the results as shown in Table 4, which
demonstrated that our proposed auxiliary loss can help
to improve the reconstruction performance (MPJPE, PA-
MPJPE, and MPJVE) and the motion smoothness (ACC-
ERR).

3DPW
loss MPVPE↓ MPJPE↓ PA-MPJPE↓ Accel↓

Without Laux 86.8 76.0 47.1 6.2
With Laux 86.4 75.7 45.6 6.1

Table 4. Evaluation of the combinations of loss functions on the
3DPW dataset.

3.6. Inference Time Analysis:

Methods like MPS-Net [30] and GLoT [25] only esti-
mate the human mesh of the center frame given 16 frames
as their input. Considering these methods can extract all
features by their backbone once and then utilize batch pro-
cessing to accelerate the inference speed, we provide a more
thorough inference time comparison in Table 5.

In this experiment, the video input comprises a total
of 64 frames. Upon feature extraction from the backbone
(with the shape of [64, 2048]), MPS-Net and GLoT require
the creation of 64 batch input tubes [64, 16, 2048] through
padding and sliding window. Since their models only re-
turn the output mesh of the center frame, the output would
be [64, 1, 6890, 3], indicating output mesh vertices [6890, 3]
across 64 frames. In contrast, our DiffMesh just needs
to reshape the input [64, 2048] into 4 batches, resulting
in the shape of [4, 16, 2048]. Consequently, the output of
DiffMesh is [4, 16, 6890, 3], which is then reshaped back
to [64, 6890, 3]. Based on the total processing time, our
DiffMesh is more efficient than MPS-Net [30] and GLoT
[25] since DiffMesh can output human meshes of all input
frames.

4. Human Mesh Visualization
We first visualize the qualitative comparison on the

3DPW [27] dataset in Fig. 3. The circle areas highlight
locations where our DiffMesh performs better than GLoT
[25].

In our experimental setup, we utilize 16 input frames,
and the total number of steps is set to 30. In the reverse
motion process, DiffMesh outputs [y1, y2 · · · , y30] over 30
steps. For the output mesh sequence of 16 frames, we use
[y1, y2 · · · , y16]. Additionally, we generate the mesh from
[y16, y17 · · · , y30], as visually depicted in Fig 4. This visu-
alization illustrates the trend of the generated human mesh
gradually decoding toward the desired human mesh of each
input frame.

Furthermore, we show the qualitative results of
DiffMesh on in-the-wild videos in Fig. 5. We observe that
DiffMesh demonstrates remarkable performance in recon-
structing more reliable human mesh sequences with tem-
poral consistency compared to previous methods. Please
refer to our video demo for the more reconstructed mesh
sequence results.

5. Broader impact and limitation
DiffMesh establishes an innovative connection between

diffusion models and human motion, facilitating the gen-
eration of accurate and temporal smoothness output mesh
sequences by integrating human motion into both the for-
ward and reverse processes of the diffusion model. By en-
abling direct 3D human mesh reconstruction from 2D video
sequences, DiffMesh eliminates the dependency on addi-
tional motion sensors and equipment, thereby streamlining
the process and reducing costs.

However, despite its advancements, DiffMesh is not
without limitations. Similar to previous methods, DiffMesh
may face challenges in scenarios with substantial occlu-
sions, resulting in the production of unrealistic mesh out-
puts. To address this issue, further exploration into spatial-
temporal interactions within the human body is warranted,
serving as a focal point for our future research. Addition-
ally, DiffMesh may encounter difficulties in rare and com-
plex pose scenarios due to the constraints of limited training
data, highlighting the necessity for ongoing development
and refinement efforts.
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Video-based
Methods

total frames for
video input

Backbone
features after backbone are

reshaped for model processing
Output
shape

processing time
(without backbone time)

MPS-Net [30] 64 ResNet50 [8] [64,2048] to [64,16,2048] [64,1,6890,3] to [64,6890,3] 1.04 s
GLoT [25] 64 ResNet50 [8] [64,2048] to [64,16,2048] [64,1,6890,3] to [64,6890,3] 1.17 s

DiffMesh (ours) 64 ResNet50 [8] [64,2048] to [4,16,2048] [4,16,6890,3] to [64,6890,3] 0.34 s

Table 5. Inference time comparison on 3DPW dataset between our DiffMesh and previous video-based HMR methods with the same
hardware platform ( single NVIDIA A5000 GPU is used).
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Figure 3. Qualitative comparison on the 3DPW dataset
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Figure 4. Visualization of decoding steps during the reverse motion process.
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