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Abstract

In the supplementary material, we provide additional
implementation details (Section 1), as well as quantitative
results on rendering and reconstruction performance with
ground truth camera poses, 3DGS initialization with differ-
ent resolutions, and qualitative results (Section 2).

1. Implementation Details

In the following, we provide more details about our sys-
tem and specifically on the parameters, the algorithm to
encode the surface normal, and the process to filter outlier
points before the mesh reconstruction.

System Parameters. We set the threshold of color difference
Cthreshold to be 60. This parameter is used to decide whether
a new channel should be added to a pixel. In addition, the
maximum weight for each channel Wmax is set as 5. For
the Poisson surface reconstruction [3], we use the default
parameters following the Open3D documentation [8].

Surface Normal Encoding. To generate mesh from Multi-
HexPlanes, each channel needs to have surface normal in-
formation as an extra attribute. In addition to the normal
surface, each channel h stores the standard attributes of color,
distance of observation to its face, and weight. Each of them
requires 4 bytes of memory, resulting in a total of 12 bytes.
The surface normal Nh has three components that have
non-integer values. If we simply store Nh as three float
values, the storage of a channel will increase to 24 bytes,
which doubles the size of the map. This contradicts our aim
of saving memory for better texture and reconstruction of the
map. Hence, we store Nh as a uint32, which only takes 4
bytes of memory.

We first use octahedral normal vectors (ONV) [5] to
encode the 3D surface normal vector Nh to a 2D vector
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Figure 1. Example scene on ScanNet [2] with Multi-HexPlanes.
Our outlier filtering process successfully removes noisy channels
which points do not belong to any real-world surface.

(uh, vh), as follows:

Nh ←
Nh

|Nh(x)|+ |Nh(y)|+ |Nh(z)|
,

uh =

{
Nh(x) if Nh(z) ≥ 0,

(1− |Nh(y)|)sign(Nh(x)) otherwise,

vh =

{
Nh(y) if Nh(z) ≥ 0,

(1− |Nh(x)|)sign(Nh(y)) otherwise,

(1)

where uh, vh ∈ [−1, 1]. This process can be interpreted
as mapping the octants of a unit sphere to the faces of an
octahedron. Then, the octahedron is unwrapped to a 2D
square. This process is efficient to encode and decode with
minimal error [1]. We then map uh and vh to the range
[0, 216] so as to store them as two uint16 variables that
are further merged as a uint32. In our experiments, we
found that the reconstruction error has nearly no difference
to storing the surface normal as three float variables and
the encoding time is trivial. However, this representation
saves 8 bytes of memory per channel.
Outlier filtering. Due to inaccurate depth pixels in the
input frames of ScanNet dataset [2], the projected 3D points
contain noise that does not represent any real-world surface
(Figure 1 (a)). This results to channels in Multi-HexPlanes
getting falsely updated. To mitigate this, we filter out noise
before performing Poisson Reconstruction on the ScanNet



Outlier Filtering Depth
L1 [cm] ↓

Comp.
Error [cm] ↓

Acc.
Error [cm] ↓

without (1cm) 22.07 4.97 14.16
with (1cm) 20.85 4.80 12.10

without (2cm) 22.13 4.83 14.09
with (2cm) 21.04 4.72 12.30

without (4cm) 22.76 4.55 14.12
with (4cm) 21.40 4.48 12.01

without (8cm) 24.55 4.98 13.54
with (8cm) 20.89 4.61 11.82

Table 1. Reconstruction evaluation on the ScanNet dataset [2]
with/without outlier filtering. The reported metrics are averaged
over 20 scenes. Best results per resolution are in bold.

dataset [2]. Specifically, we record the number of times
that a channel is updated by the input points. A channel is
considered as an outlier if it is updated less than Tth times.
Hence, no point will be extracted from that channel. We
empirically set Tth as the threshold corresponding to the
25th percentile of the update times for all channels. The
impact of the outlier filtering is shown in Figure 1 (b). The
quantitative results in Table 1 confirm the improvement on
mesh reconstruction over all metrics and for all resolutions
when outliers are filtered.

2. Additional Results

Rendering with GT Poses. Table 2 shows the rendering
performance of our method and Voxblox [7] on the Replica
[12] dataset when using ground truth (GT) poses. Same as
the performance using poses estimated by ORB-SLAM2 [6],
Multi-HexPlanes outperforms Voxblox [7] by a clear margin
under the same pixel/voxel resolution. In addition, Multi-
HexPlanes still saves 67% of the map size when compared
to Voxblox.

We report the results per each scene of Replica [12] in
Table 3. The performance of Multi-HexPlanes is consistently
better than that of Voxblox [7] on all scenes in Replica, re-
gardless of the resolution and estimated camera poses. When
using GT poses, both methods achieve an improvement in the
rendering metrics, which further confirms the impact of the
camera poses on the rendering quality. The rendering perfor-
mance is also highly correlated to the pixel/voxel resolution.
For each scene, methods using 1 cm resolution achieve bet-
ter metrics than 8 cm resolution. The improvement is more
significant when the GT poses are used. In addition, our
method with 1 cm pixel resolution and GT poses has very
close metrics to Point-SLAM [9]. In some specific scenes,
Multi-HexPlanes even achieves better performance.
Additional Qualitative Results. Figure 2 provides addi-
tional qualitative results of rendered images. When using a
coarser voxel resolution, Voxblox fuses the colors of differ-
ent objects if they fall into the same voxel, leading to blurry
rendering on the border of two neighboring objects. Thanks

to the multiple-plane representation, Multi-HexPlanes still
renders distinctive colors on different objects when using
the same pixel size. As highlighted in Figure 2, the im-
provement is especially visible on the edge of the board in
office4, as well as the pillows and the sofa in office2
and room0. We also highlight additional regions where
Voxblox (1 cm) renders invalid pixels due to errors in cam-
era poses. Moreover, failure cases are provided in Figure 2
and are highlighted with red boxes. Multi-HexPlanes renders
blue colors on the wall and brown on the ground. The source
of the false colors is the texture of the blue chair and the
brown desk respectively, which are projected on the same
pixels. However, despite the small flaws, the PSNR score of
the entire image is still much higher than that rendered by
Voxblox [7].

Reconstruction with GT Poses. Figure 3 shows the aver-
age reconstruction results when using GT poses to build the
map on Replica and ScanNet. For the ScanNet dataset, we
still apply the same outlier filtering process since the noisy
depth measurements remain despite the GT camera poses.
Similarly to the results using poses from [6], our method
achieves better performance when the resolution is coarse,
while saving around half of the map size. When using GT
poses, the accuracy of the 3D location of the input observa-
tions is improved and, thus, the mapping is more accurate.
As a result, the overall reconstruction performance of both
methods is better than when using estimated poses. More-
over, the amount of map size saved by Multi-HexPlanes is
much larger on the ScanNet dataset [2] with GT poses, since
a more accurate 3D location of input points results to less
wrong channel updates and extensions.

3DGS Initialization. Table 4 shows the results of the ini-
tialization of 3DGS [4] with different voxel and pixel sizes.
Same as in the main paper, the PSNR scores are averaged
over the test set. In general, both Multi-HexPlanes and
Voxblox provide better initialization with a higher resolution,
which indicates that the denser the feature points the more the
training of 3DGS [4] improves. Under the same resolution,
Multi-HexPlanes always outperforms Voxblox, showing that
our feature points are more representative. When using 8
cm resolution, the performance of Voxblox is even worse
than the standard COLMAP [10, 11] initialization, while
Multi-HexPlanes still achieves a better performance. In ad-
dition, the scores of 3DGS initialized by Multi-HexPlanes
is higher after 7k iterations of training than 30k, regardless
of the pixel resolution. On the other hand, 3DGS reaches
the better performance after 30k of iterations when using the
standard COLMAP initialization. This further indicates that
our dense feature points lead to faster convergence, making
the training of 3DGS more efficient.



Method PSNR [dB] ↑ SSIM ↑ LPIPS ↓ Map Size [MB] ↓ Mapping Time/Frame [s] ↓

Voxblox-1cm [7] 33.00 0.902 0.127 284.13 0.11
Multi-HexPlanes-1cm 33.40 0.914 0.118 96.33 0.27
Voxblox-2cm [7] 29.84 0.850 0.203 68.34 0.07
Multi-HexPlanes-2cm 30.92 0.868 0.189 25.60 0.19
Voxblox-4cm [7] 27.01 0.809 0.271 17.76 0.05
Multi-HexPlanes-4cm 28.30 0.829 0.247 6.89 0.14
Voxblox-8cm [7] 24.35 0.780 0.360 5.01 0.05
Multi-HexPlanes-8cm 25.84 0.801 0.322 1.86 0.12

Table 2. Rendering Performance with GT Poses. The reported results are averaged over the 8 scenes on Replica [12]. Multi-HexPlanes
consistently outperforms Voxblox [7] with the same voxel/pixel resolution, while significantly saving storage. Best results per metric are
highlighted as 1st , 2nd , and 3rd .

Method Metric Room 0 Room 1 Room 2 Office 0 Office 1 Office 2 Office 3 Office 4 Avg.

Neural Implicit Fields

NICE-SLAM [15]
PSNR [dB] ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42
SSIM ↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809
LPIPS ↓ 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vox-Fusion∗ [13]
PSNR [dB] ↑ 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21 24.41
SSIM ↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801
LPIPS ↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

Point-SLAM [9]
PSNR [dB] ↑ 32.40 34.08 35.50 38.26 39.16 33.99 33.48 33.49 35.17
SSIM ↑ 0.974 0.977 0.982 0.983 0.986 0.960 0.960 0.979 0.975
LPIPS ↓ 0.113 0.116 0.111 0.100 0.118 0.156 0.132 0.142 0.124

CPU-only methods

Voxblox-1cm [7]
PSNR [dB] ↑ 24.94 26.72 27.57 32.20 34.01 27.82 27.05 30.13 28.91
SSIM ↑ 0.731 0.767 0.846 0.893 0.916 0.829 0.839 0.892 0.844
LPIPS ↓ 0.219 0.252 0.175 0.157 0.129 0.202 0.174 0.150 0.181

Multi-HexPlanes
1cm

PSNR [dB] ↑ 26.22 28.73 29.28 33.28 34.69 30.03 29.33 31.33 30.49
SSIM ↑ 0.775 0.836 0.867 0.903 0.919 0.866 0.879 0.908 0.876
LPIPS ↓ 0.183 0.198 0.160 0.156 0.138 0.141 0.136 0.137 0.154

Voxblox [7]
1cm-GT-pose

PSNR [dB] ↑ 29.69 30.80 31.78 36.49 36.29 32.44 32.65 33.86 33.00
SSIM ↑ 0.851 0.861 0.895 0.937 0.932 0.902 0.913 0.929 0.902
LPIPS ↓ 0.136 0.176 0.141 0.115 0.122 0.132 0.096 0.098 0.127

Multi-HexPlanes
1cm-GT-pose

PSNR [dB] ↑ 30.08 30.89 32.33 37.30 36.61 33.20 32.76 34.31 33.40
SSIM ↑ 0.870 0.880 0.910 0.943 0.933 0.917 0.926 0.936 0.914
LPIPS ↓ 0.120 0.159 0.127 0.109 0.128 0.120 0.085 0.094 0.118

Voxblox-8cm [7]
PSNR [dB] ↑ 21.28 23.09 24.08 26.93 28.28 22.13 22.50 23.51 24.02
SSIM ↑ 0.645 0.736 0.784 0.830 0.845 0.790 0.772 0.827 0.783
LPIPS ↓ 0.429 0.446 0.374 0.343 0.332 0.352 0.327 0.313 0.364

Multi-HexPlanes
8cm

PSNR [dB] ↑ 22.07 24.31 24.67 27.93 29.62 24.46 24.27 25.11 25.35
SSIM ↑ 0.664 0.753 0.798 0.842 0.864 0.818 0.800 0.839 0.801
LPIPS ↓ 0.398 0.403 0.343 0.315 0.289 0.307 0.297 0.289 0.329

Voxblox [7]
8cm-GT-pose

PSNR [dB] ↑ 21.96 23.45 24.05 27.30 28.15 22.25 23.29 24.39 24.35
SSIM ↑ 0.648 0.739 0.783 0.833 0.845 0.790 0.775 0.829 0.780
LPIPS ↓ 0.419 0.443 0.374 0.337 0.330 0.349 0.318 0.310 0.360

Multi-HexPlanes
8cm-GT-pose

PSNR [dB] ↑ 23.22 24.81 25.17 28.48 29.35 34.55 25.27 25.90 25.84
SSIM ↑ 0.671 0.756 0.801 0.846 0.863 0.818 0.809 0.843 0.801
LPIPS ↓ 0.379 0.398 0.339 0.306 0.291 0.308 0.277 0.282 0.322

Table 3. Rendering Performance on each scene of Replica [12]. Results of NICE-SLAM [15], Vox-Fusion [13], and Point-SLAM [9] are
from Point-SLAM [9]. The reported results are based on estimated poses unless explicitly stated as ’GT-pose’. Best results per GPU/CPU
methods are highlighted as 1st , 2nd , and 3rd .
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