
Appendix

A. Heart-LoRA with More Granularity

As mentioned earlier, the original Heart-LoRA uses
layer-by-layer accumulation to calculate responsiveness.
This approach ensures that the responsiveness of each head
is considered globally. However, directly calculating re-
sponsiveness at each layer and applying deactivation is also
worth exploring. Therefore, we propose a variant of Heart-
LoRA that directly calculate responsiveness at each layer
and then perform the deactivation at layer level. We term
this variant as Heart-LoRA† and present its results in Table
3.

From the results, it can be seen that the layer-by-layer
implementation of Heart-LoRA† also performs well, out-
performing LoRA by 0.6%. We argue that this is due to our
proposed responsiveness calculation algorithm, where the
responsiveness of the heads acts on the local layer, which
could potentially yield better results in certain tasks. Over-
all, both Heart-LoRA† and the original Heart-LoRA signif-
icantly outperform LoRA and generally require fewer pa-
rameters to function.

B. On Hierarchical Transformers

We also apply our method on Swin Transformer [18],
a widely adopted and representative design of hierarchical
structures of transformers aiming to improve ViT’s compu-
tational efficiency.

Given that the number of heads and dimension of to-
ken is different across layers, simply setting a ne hyper-
parameter is not enough. Instead, we set a hyper-parameter
ratio indicating the percentage of heads to deactivate in the
window attention. The accumulation of responsiveness R
and thus the candidate C for swin transformer is restricted
in layers with the same number of attention heads in this

Method Average Natural Specialized Structured
Full 68.9 75.9 83.4 47.6
LoRA 76.4 81.5 85.2 62.6
Heart-LoRA† 76.8 (↑ 0.4) 81.7 (↑ 0.2) 85.8 (↑ 0.6) 63.0 (↑ 0.4)

Table 3. Results on VTAB-1K of Heart-LoRA†, using a layer by
layer deployment of the calculation in section 3.

Method Average Natural Specialized Structured
Full 74.99 79.2 86.2 59.7
Linear 62.60 73.5 80.8 33.5
VPT-Deep 71.55 76.8 84.5 53.4
Bi-LoRA 76.67 82.0 86.8 61.2
Heart-LoRA 76.93 (↑ 0.26) 82.3 (↑ 0.3) 87.1 (↑ 0.3) 61.4 (↑ 0.2)

Table 4. Results on VTAB-1K using Swin-B as backbone, re-
ported accuracy from average, natural, specialized and structured.

case, which makes sense since layers with the same num-
ber of attention heads generally are in the same hierarchy of
Swin Transformer.

We use Swin-B as our backbone following [15]. It con-
sists of four stages, with depths {2, 2, 18, 2} and number of
heads {4, 8, 16, 32}. In this case, take ratio = 0.25 as an
example, we set the number of candidate of deactivation C
for the four stages separately as {1, 2, 4, 8}. While in many
tasks, the deeper the layer is, it learns more task specific
information, setting a fixed number of heads also proves
to be effective since it discard little information in deeper
layer while discarding much information in shallower layer
where more redundancy persists.

The results are shown in Table 4, using swin-B pre-
trained on ImageNet-21K [4] as backbone for Heart-LoRA.
Following [15] [14], we compare Heart-LoRA with several
methods which could also be applied on swin transformer:
Full, Linear, VPT [11] and Bi-LoRA [15]. From the results,
we observe that Heart-LoRA achieve high performance in
Swin Transformer even with only very few hyper-parameter
settings, showcasing its versatility across different trans-
former designs. While the performance may be sub-optimal
compared to ViT, there is potential for further improvement
as our experiments were conducted in only a limited number
of cases. Additionally, our method on Swin-B also demon-
strates that Heart-LoRA is structure-agnostic and method-
agnostic, indicating its potential to enhance performance
across various architectures.

C. Full Ablation on Number of Heads
We provide a comprehensive analysis of the impact of

ne settings on performance. We selected 16 datasets, which
essentially encompass all types of tasks in the VTAB-1K
benchmark. For each dataset, we varied the value of ne and
tracked the corresponding performance. Since we are using
ViT-B, which has 12 heads, the values for ne were set at
1, 3, 5, 7, 9, 11 to provide more data points. The results are
in Fig 8.

The results show a general trend where increasing ne
leads to a decrease in performance. However, the degree
of this decrease is not linear; in many datasets, we observed
that the performance drop after increasing ne is not signifi-
cant (like in Cifar100 and dSpr-Ori), and in some cases the
performance even improves (EuroSAT and SVHN). We ar-
gue that this phenomenon is due to the inherent redundancy
among all the heads in the multi-head self-attention mecha-
nism, where some heads have minimal responsiveness (de-
fined in section 1) and thus contribute little to the current
task. Since Heart-LoRA can accurately identify these min-
imally responsive heads and deactivate them accordingly,
the performance does not drop significantly, and in many
datasets, it even improves.

However, when ne is large, such as ne = 9 or ne = 11,



1 3 5 7 9 11
ne

0.64

0.66

0.68

0.70

0.72

Ac
cu

ra
cy

cifar

1 3 5 7 9 11
ne

0.890

0.895

0.900

0.905

0.910

0.915

0.920

Ac
cu

ra
cy

caltech101

1 3 5 7 9 11
ne

0.67

0.68

0.69

0.70

0.71

Ac
cu

ra
cy

dtd

1 3 5 7 9 11
ne

0.9885

0.9890

0.9895

0.9900

0.9905

0.9910

Ac
cu

ra
cy

oxford_flowers102

1 3 5 7 9 11
ne

0.900

0.905

0.910

Ac
cu

ra
cy

oxford_iiit_pet

1 3 5 7 9 11
ne

0.82

0.84

0.86

0.88
Ac

cu
ra

cy

svhn

1 3 5 7 9 11
ne

0.544

0.546

0.548

0.550

0.552

0.554

0.556

Ac
cu

ra
cy

sun397

1 3 5 7 9 11
ne

0.860

0.865

0.870

0.875

Ac
cu

ra
cy

patch_camelyon

1 3 5 7 9 11
ne

0.945

0.950

0.955

0.960

Ac
cu

ra
cy

eurosat

1 3 5 7 9 11
ne

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

clevr_count

1 3 5 7 9 11
ne

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

clevr_dist

1 3 5 7 9 11
ne

0.495

0.500

0.505

0.510

0.515

0.520

Ac
cu

ra
cy

dmlab

1 3 5 7 9 11
ne

0.8000

0.8025

0.8050

0.8075

0.8100

0.8125

0.8150

Ac
cu

ra
cy

kitti

1 3 5 7 9 11
ne

0.725

0.750

0.775

0.800

0.825

0.850

Ac
cu

ra
cy

dsprites_loc

1 3 5 7 9 11
ne

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

dsprites_ori

1 3 5 7 9 11
ne

0.34

0.36

0.38

0.40

0.42

0.44

Ac
cu

ra
cy

smallnorb_ele

Figure 8. Full ablation results on the effect of ne on different datasets in VTAB-1K benchmark.

more than half of the heads are deactivated. At this point,
performance generally experiences significant degradation.
This is because deactivating too many heads also deacti-
vates those with high responsiveness, thus discarding their
contributions.

Finally, we can see that the ne value that yields the high-
est performance varies across different datasets, which val-
idates that the degree of redundancy varies with the task,
and thus the pattern of heads that Heart-LoRA should iden-
tify and deactivate is distinct across tasks. This confirms
the ability of Heart-LoRA to uniquely discover task-specific
patterns for different tasks.

D. Other Ways to Obtain Responsiveness

Although we utilized Taylor expansion in the section 3
to calculate responsiveness, it is feasible to use other sim-
pler and more straightforward methods as well. Here, we
present the results of calculating responsiveness using two

criteria: the L2 norm of weight with one parameter or the
L2 norm of gradient, as shown in Table 5.

From the results, we can observe that using Heart-
LoRA†, we still manage to surpass LoRA and match Bi-
LoRA. Considering this was achieved with a search be-
tween ne values of only 1 and 3, it is quite impressive. This
outcome stems from the unique adaptation process of Heart-
LoRA, which identify the redundant heads and deactivate
them during fine-tuning. However, it is noted that this re-

Method Average Natural Specialized Structured
Full 68.9 75.9 83.4 47.6
LoRA 76.4 81.5 85.2 62.6
Heart-LoRA† (weight) 76.7 81.6 85.8 62.5
Heart-LoRA† (grad) 76.7 81.6 85.5 63.0

Table 5. Results on VTAB-1K of Heart-LoRA†, using L2 norm
of weight (denoted as weight) or L2 norm of gradient (denoted as
grad) to calculate the responsiveness.



sult does not outperform the effectiveness of Heart-LoRA†

using Taylor expansion, which underscores the superiority
of approach from the section 3. By considering both weight
and gradient simultaneously, it allows for the identification
of heads with truly minimal responsiveness, thereby reduc-
ing the risk of misidentification.

E. Comparison to Arbitrary Deactivation
We compare the results of the arbitrary deactivation ap-

proach adopted in section 4.3.1 with Heart-LoRA. The re-
sults are presented in Table 6. As we can see, although
the arbitrary mask performs quite well, exceeding LoRA by
roughly 0.5%, it still underperforms Heart-LoRA by 0.3%,
which is notable. This indicates that the performance gain
of Heart-LoRA is not only due to the structural advantage
of head deactivation but also stems from the unique advan-
tage of using responsiveness to cleverly identify unimpor-
tant heads.

While there is improvement when utilizing arbitrary de-
activation, we did not utilize the property of head redun-
dancy to the extreme as we were arbitrarily selecting heads
to deactivate and ignore the fact that head-level responsive-
ness varies across tasks, as discussed in section 4.3.2. One
option to maximize the performance is to study the atten-
tion patterns for each downstream task manually. How-
ever, manually studying the patterns is not feasible when
dealing with a significant amount of downstream tasks for
it’s huge computational cost. This leads us to seek meth-
ods capable of efficiently identifying deactivation candi-
dates in the study of PETL without the need for manual in-
vestigation, and this brings us to our proposed Heart-LoRA
which utilize task-specific responsiveness to cleverly recog-
nize unimportant heads to deactivate.

Method Average Natural Specialized Structured
Full 68.9 75.9 83.4 47.6
LoRA 76.4 81.5 85.2 62.6
Front 76.9 81.7 85.8 63.3
Heart-LoRA 77.2 (↑ 0.3) 81.8 (↑ 0.1) 86.2 (↑ 0.4) 63.5 (↑ 0.2)

Table 6. Comparison between using arbitrary deactivation and the
original Heart-LoRA.

F. Experimental details
F.1. Actual Implementation

The core of Heart-LoRA lies in obtaining a task-specific
mask, with the actual code implementation in Alg. 1:

F.2. Backbones

F.3. Implementation Environment

On a single NVIDIA RTX 4090 GPU with OS being
Ubuntu 22.04.3 LTS x86 64, we conduct all experiments

Algorithm 1: Implementation of obtaining the
mask using PyTorch. The obtained mask is then
used to perform the deativation of heads.

1

1 def get_scores(args, adapter, num_of_heads
=12):

2 weight = get_weight(adapter)
3 grad = get_grad(adapter)
4 step = weight.shape[1] // 12
5 all_weights = [weight[:, i:i + step] for

i in range(num_of_heads)]
6 all_grads = [grad[:, i:i + step] for i in

range(num_of_heads)]
7 scores = [get_score(all_weights[i],

all_grads[i]) for i in range(num_of_heads
)]

8 return scores
9

10 def get_mask(args, adapter, mask, ne):
11 scores = get_scores(args, adapter, 12)
12 scores_tensor = torch.tensor(scores)
13 _, indices = torch.topk(scores_tensor, ne

, largest=False)
14 indices_list = indices.tolist()
15 for i in indices_list:
16 mask[:, :, i, :, :] = 0
17 return mask

Model
Pre-Training

Dataset Size (M)
Pre-Trained

Weights
ViT-B/16 [5] ImageNet-21K 85.8 checkpoint
Swin-B [18] ImageNet-21K 86.7 checkpoint

Table 7. Pre-Trained backbones.

using PyTorch and timm library.

F.4. Data Augmentation

F.4.1 VTAB-1K

Following [15], we simply adjust the image dimensions to
224× 224.

F.4.2 Few-shot Learning

Also following [34] and [15], we apply color-jitter and Ran-
dAugmentation to the training samples. For the valida-
tion/test samples, we first resize them to 256 × 256, then
center-crop them to 224 × 224, and finally normalize them
using the mean and standard deviation of ImageNet.

F.5. Hyper-parameter

Following [15], we continue to employ a scaling param-
eter s. Specifically, our search for s is conducted within
the set {0.01, 0.1, 1.0, 10, 100}. Other hyper-parameters
are in Table 9, which is basically the same as those in [15]

https://storage.googleapis.com/vit_models/imagenet21K/ViT-B_16.npz
https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth
https://pytorch.org/
https://rwightman.github.io/pytorch-image-models/


and [34]. More information about the datasets used is pro-
vided in Table 8. For parameters ne, when the head-level
deactivation of Heart-LoRA result in performance degrada-
tion, we simply opt for a hyper-parameter setting of ne = 0.
In this scenario, no information is discarded and P is simply
all ones.



Dataset #Classes Train Val Test

VTAB-1k

CIFAR100 100

800/1,000 200

10,000
Caltech101 102 6,084
DTD 47 1,880
Oxford-Flowers102 102 6,149
Oxford-Pets 37 3,669
SVHN 10 26,032
Sun397 397 21,750
Patch Camelyon 2 32,768
EuroSAT 10 5,400
Resisc45 45 6,300
Retinopathy 5 42,670
Clevr/count 8 15,000
Clevr/distance 6 15,000
DMLab 6 22,735
KITTI-Dist 4 711
dSprites/location 16 73,728
dSprites/orientation 16 73,728
SmallNORB/azimuth 18 12,150
SmallNORB/elevation 18 12,150

Few-shot

Food-101 101

(1/2/4/8/16)*(#Classes)

20,200 30,300
Stanford Cars 196 1,635 8,041
Oxford-Flowers102 102 1,633 2,463
FGVC-Aircraft 100 3,333 3,333
Oxford-Pets 37 736 3,669

Table 8. Dataset Details.

optimizer batch size learning rate weight decay # epochs lr decay # warm-up epochs

VTAB-1K AdamW 64 1e-3 1e-4 100 cosine 10
Few-shot learning AdamW 64 5e-3 1e-4 100 cosine 10

Table 9. Other Hyper-parameters.


