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Figure 1. Visual illustration of the impact of equation (3) on training
image DPMs. The zoomed-in regions are shown below the main
results. Notably, the image restoration quality is improved by
applying data augmentation to the conditional inputs.

1. Additional Implementation Details
In this section, we present additional implementation de-

tails omitted from the main paper due to space constraints.
We train and evaluate all models with Pytorch on a comput-
ing cluster equipped with A40-40GB and A100-80GB GPUs.
Our implementation code and pre-trained model (download
link) can be found in the supplements. The parameter set-
tings are presented in Table 7. The size of our video DPM is
1310 MB on the disk, while that of image DPM is 576 MB.

1.1. Training of conditional Image DPMs

In order to improve the generation flexibility and empiri-
cal performance of FLAIR, we jointly train a single image
diffusion model on conditional and unconditional objectives
by randomly dropping c during training (e.g., puncond = 0.2),
similar to the classifier free guidance [12, 17]. Hence, the
sampling is performed using the adjusted noise prediction:

ϵ̃θ(xt, c, t) = λϵθ(xt, c, t) + (1− λ)ϵθ(xt, t), (1)

where λ > 0 is the trade-off parameter, and ϵθ(xt, t) is
the unconditional ϵ-prediction. For example, setting λ = 1
disables the unconditional guidance, while increasing λ >

1 strengthens the effect of conditional ϵ-prediction. The
objective function for training the ϵ̃θ is

Lθ = Ex0,c,ϵ,t∼[1,T ]

[
∥ϵ− ϵ̃θ(xt, c, t)∥2

]
. (2)

Given that our video diffusion restoration models are fine-
tuned on pre-trained image DPMs, it is reasonable to assume
that a superior pre-trained image DPM would result in an
better video DPM in terms of restoration quality. To this end,
a data augmentation for training conditional image DPMs
is done by constructing the conditional inputs c ∈ RNd as
follows

c = mc ⊙ (y) ↑sbicubic, (3)

where mc is a weighted mask that randomly reduces the
importance of some pixels, analog to the masked augmenta-
tion training proposed in [11]. We have observed that this
data augmentation on c can improve the restoration results
especially on large motion degradation, as shown in Fig. 1.
The conditional input c is normalized to intensity range of
[−1, 1] for better performance and stable training. We train
all image DPMs in half precision (float16) with a batch-
size of 64. We use the Adam optimizer with a fixed learning
rate of 1.5× 10−4 and a dropout rate of 0.2 for each model.
In Fig. 5, we present samples of synthetically generated ran-
dom kernels, following [1, 26], used to generate the image
and video deblurring dataset.

1.2. Implementations of Video DPM

We use einops [16] to efficiently rearrange the features
between spatial and temporal layers.
Group Normalization for Sequential Features. For video
DPMs, we observe that directly calculating group normal-
ization to video features as independent images by rear-
ranging the input as RB×N×C×H×W → R(BN)×C×H×W

results in temperature unalignment across frames. When
calculating the group normalization, we consider the en-
tire video by rearranging the input from RB×N×C×H×W to
RB×C×N×H×W , Consequently, the group normalization is
computed along the N , H , W axis. We have observed that
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Figure 2. Illustration of one basic block of our proposed recurrent
feature enhancement (RFE) module. The cat operator denotes
feature concatenation.

applying this rearrangement to group normalization layers,
which are pre-trained in image DPM, does not result in any
performance degradation.
More details about RFE Module. As introduced in the
main paper, we implement recurrent feature enhancement
(RFE) module to capture sequential dependencies and syn-
chronize video frame features at high resolutions (e.g., [512,
256]). Fig 2 illustrates one basic block of our RFE module.
Given the extracted temporal features {f̃n

i }Nn=1 from the 3D
residual blocks at i-th resolution scale, we apply Deformable
Feature Alignment (DFA) [4] to propagate and align the
intermediate features f̂n

i,j as

f̂n
i,j = DFA(f̃n

i , g
n−1
i,j , gn−2

i,j ,on→n−1
i ,on→n−2

i ),

where gn−1
i,j and gn−2

i,j are the features at the (n− 1)-th and
(n − 2)-th sequential step in the j-th propagation branch,
respectively. For example, we have gn

i,0 = f̃n
i . Similarly,

the on1→n2
i denotes the optical flow estimated from n1-th

degraded input frame to the n2-th counterparts. The features
f̂n
i,j are then concatenated (cat) and passed into a stack of

residual blocks (ResBlocks) to fuse gn
i,j , denoted as

g̃n
i,j = f̂n

i,j + ResBlocks(cat(gn
i,j−1, f̂

n
i,j)), (4)

gn
i,j = w̃ ∗ (1− m̃n

t )⊙ g̃n
i,j + (m̃n

t )⊙ g̃n
i,j , (5)

where w̃ ∈ [0, 1] balances the smoothness of the background
scenes of the fused featur, denoted as (1 − m̃n

t ) ⊙ g̃n
i,j .

The masks {m̃n
t }Nn=1 are the downscale version of facial

region masks mt = {mn
t }Nn=1 estimated from x0t at the

t-th reverse diffusion step. The main motivation behind the
design of propagation annealing is to enhance robustness
against appearance changes and error accumulation within
the recurrent network. We have observed that this annealing
can notably improve the temporal consistency of background
scenes across frames while preserving the sharpness of facial
region, as shown in Fig 3.

Figure 3. Visual demonstration of the impact of our propagation
annealing in (4) on 8× SR task. Our RFE layers reuse the same re-
current blocks to save parameters and reduce memory by predicting
new frame features from previously refined ones. As shown in [13],
this sequential strategy leads to noise accumulation in long-range
data. In (a), static background artifacts accumulate more easily
than moving face without annealing. In (b), repeating 1 frame 25
times shows artifacts in the static face part without annealing. The
same annealing setting is used for all experiments in the paper,
indicating this strategy’s generalizability. In (c), the background
scenes in each frame are improved due to the use of our propagation
annealing, as shown in the zoomed-in figure.

1.3. Training of video DPMs

All video DPMs are fine tuned with batch size B = 4 and
frame length N = 10. We set schedule T = 1000 and uni-
formly spaced βt for both video deblurring and JPEG restora-
tion, while T = 2000 for video super-resolution tasks. We
use the Adam optimizer with a fixed learning rate of 1×10−4

and weight-decay of 0.05 for fine-tuning the video DPMs.
Similarly, we train all DPMs in half precision (float16).
We do not apply classifier free guidance for fine-tuning video
diffusion model. Note that, we do not perform any check-
point selection on our models and simply select the latest
checkpoint of each model. It will take around a week to get
a video DPM.
1.4. Implementations during Inference

Our proposed reverse diffusion sampling is illustrated in
Algorithm 1. We use an exponential decay for γt, where
we parameterize γt = 1 − ζ

σ2
eᾱt

ᾱt−1
, where ζ controls the

strength of the data consistency module, and γ is clipped
into range [0, 1]. The setting of ζ for each task is presented
in Table 7. We use an exponential growth for {wt}K−1

t=τ . We
parameterize wt = e−(t−τ)/(K−τ) ∗ wτ , where wτ controls
the final strength of the enhancement module, and τ controls
where the enhancement modules end its participation during
sampling. The setting of wτ and τ for each task can be
found in Table 7. We run a grid search for best controlling
hyperparameters of the two-stage conditional refinement
and the rescheduling time step K for each dataset, similar



Algorithm 1 FLAIR Face Video Iterative Refinement

1: Input: ϵθ,ϕ: Video denoiser network; y: Degraded
video; G : Image Enhancement module; γt, ρt, wt;

2: Output: Restored video x0

3: Sample xT ∼ N (0, I) ▷ Run diffusion sampling
4: for t = T, . . . , 1 do
5: ϵ ∼ N (0, I)
6: x0t =

1√
ᾱt
(xt + (1− ᾱt)ϵθ,ϕ(xt, c, t))

7: x̃0t = x0t − γt(A+Ax0t −A+y)
8: x̃0t = (1− wtmt)⊙ x̃0t + wtmt ⊙ G(x̃0t)
9: ϵ̃t =

1√
1−ᾱt

(xt −
√
ᾱtx̃0t)

10: xt−1 =
√
ᾱt−1x̃0t +

√
1− ᾱt(

√
1− ρtϵ̃t +

√
ρtϵ)

11: end for
12: return: x0

to [20,22,23,29]. This inference-time hyperparameter tuning
is cheap as it does not involve retraining or fine-tuning the
model itself. The facial mask mt estimation follows the
similar method as [10, 22, 24, 27], where we introduce in a
separate subsection 1.6.

1.5. Baseline Methods

CodeFormer [27], VQFR [10] and RestoreFormer++ [21]
refer to recently developed conditioning generative methods
that use pre-trained Vector-Quantization (VQ) codebooks as
dictionaries, achieving SOTA results in blind face restora-
tion. These codebooks are learned on the entire facial re-
gion. We employ their original implementations 1,2,3 and
pre-trained models for our tasks. For all these three baseline
methods, we follow their original implementations of frame
background enhancement accordingly.
VRT [13] denotes a recently developed video restoration
transformer (VRT) method, characterized by its parallel
frame prediction and long-range temporal dependency mod-
eling abilities. VRT has been shown superior performance
for general restoration tasks such as video denoising, deblur-
ring, super-resolution, etc. We modify the publicly available
implementation 4 and train the model for each task on the
same CelebV-Text [25] video training dataset as FLAIR.
BasicVSPP [4] is another recent SOTA method based on
recurrent refinement structure for video super-resolution.
BasicVSPP improves over BasicVSR [3] by proposing a
second-order grid propagation with flow guided deformable
alignment. Likewise, we modify the publicly available im-
plementation 5 and train the model on the same CelebV-
Text [25] training dataset as FLAIR.

1https://github.com/sczhou/CodeFormer
2https://github.com/TencentARC/VQFR
3https : / / github . com / wzhouxiff /

RestoreFormerPlusPlus
4https://github.com/JingyunLiang/VRT
5https://github.com/open-mmlab/mmagic

ILVR [7] and DR2E [22] are two recently developed con-
ditioning methods based on unconditionally trained image
DPM for solving versatile blind image restoration tasks.
Both ILVR and DR2E share the similar conditional sam-
pling implementation, whereas DR2E adapts an additional
enhancement module for face regions similar to FLAIR. We
modify the publicly available implementation 6,7 of both
methods for each FVR task. We use the similar grid search
to FLAIR for fine-tuning the hyper-parameters within ILVR
and DR2E, respectively.
DDNM [7] and DiffPIR [22] refer to recently developed
conditioning methods based on unconditionally trained im-
age DPM for solving general image inverse problems. Un-
like ILVR and DR2E, DDNM and DiffPIR rely on the
forward-model to impose data-consistency. Similarly, we
modify the publicly available implementation 8,9 of both
methods for each FVR task. We use the similar grid search to
FLAIR for fine-tuning the hyper-parameters within DDNM
and DiffPIR, respectively.

We pre-train an unconditional image DPM on FFHQ and
then fine tune it on the same CelebV-Text images used for
video DPMs as additional baseline. All diffusion model
based baseline methods, including ILVR, DR2E, DDNM,
DiffPIR share the same unconditional image DPM. We train
the baseline unconditional diffusion model modified based
on the publicly available PyTorch implementation 10 for
around 1×107 samples in total (pre-training and fine-tuning).

1.6. Face Detection and Processing

We process the images using the tools provided in
facexlib11.
Face Region Affine Transformation. We first use
RetinaFace [9] to calculate the face landmarks. Then we
use OpenCV [2] to estimate affine matrices and transform
the images to the head-only version with bicubic interpola-
tion.
Estimation of Face Mask mt. We use ParseNet [5] to
get the face parsing map, and convert it to a soft mask mt

with Gaussian blurring. The above process has been widely
adapted for FVR in recent methods, such as [10, 19, 21, 22,
24, 27].

2. Datasets
CelebV-HQ [28] dataset is a large-scale, high-quality video
dataset with rich facial attributes for video generation and
editing. CelebV-HQ contains 35, 666 video clips with the

6https://github.com/jychoi118/ilvr_adm
7https : / / github . com / Kaldwin0106 / DR2 _

Drgradation_Remover
8https://github.com/wyhuai/DDNM
9https://github.com/yuanzhi-zhu/DiffPIR

10https://github.com/openai/guided-diffusion
11https://github.com/xinntao/facexlib

https://github.com/sczhou/CodeFormer
https://github.com/TencentARC/VQFR
https://github.com/wzhouxiff/RestoreFormerPlusPlus
https://github.com/wzhouxiff/RestoreFormerPlusPlus
https://github.com/JingyunLiang/VRT
https://github.com/open-mmlab/mmagic
https://github.com/jychoi118/ilvr_adm
https://github.com/Kaldwin0106/DR2_Drgradation_Remover
https://github.com/Kaldwin0106/DR2_Drgradation_Remover
https://github.com/wyhuai/DDNM
https://github.com/yuanzhi-zhu/DiffPIR
https://github.com/openai/guided-diffusion
https://github.com/xinntao/facexlib


Method Task CelebV-Text [25] CelebV-HQ [28]
PSNR SSIM LPIPS FVD FID KID PSNR SSIM LPIPS FVD FID KID

VQFR [10]

8×
B

ic
ub

ic 26.34 0.805 0.221 238.89 46.53 9.92 26.37 0.793 0.219 528.02 74.01 14.76
CodeFormer [27] 26.60 0.783 0.238 215.07 50.03 12.40 26.64 0.770 0.236 444.52 81.58 20.44
RestoreFormer++ [21] 27.13 0.792 0.225 130.64 42.64 8.58 27.69 0.790 0.208 330.02 61.94 14.26
DR2E [22] 26.59 0.810 0.220 243.15 46.62 10.95 26.56 0.798 0.216 556.67 73.16 15.22
FLAIR (Ours) 32.13 0.889 0.139 62.43 31.93 6.29 31.80 0.875 0.132 146.57 42.06 6.68
VQFR [10]

1
6×

B
ic

ub
ic 24.31 0.762 0.270 383.47 55.04 13.69 24.28 0.743 0.268 797.95 88.40 19.94

CodeFormer [27] 24.39 0.732 0.298 397.34 59.57 16.20 24.37 0.713 0.302 865.36 98.22 25.64
RestoreFormer++ [21] 23.70 0.719 0.295 284.66 56.20 12.17 24.36 0.715 0.279 615.80 89.85 19.77
DR2E [22] 24.23 0.755 0.271 400.64 51.95 12.45 24.33 0.741 0.266 722.86 84.81 17.62
FLAIR (Ours) 28.49 0.844 0.230 201.86 50.73 10.24 28.31 0.808 0.216 413.81 78.38 11.68

Table 1. Quantitative results calculated only within face regions on two video datasets (short clips). VQFR, CodeFormer, RestoreFormer++
and DR2E are SOTA face restoration methods that rely on separate methods for backgrounds enhancement. Note the quantitative
improvements achieved by FLAIR when it is specifically evaluated on face regions. Best and second-best values for each metric are
color-coded.

Method PSNR↑ SSIM↑ LPIPS↓ FVD↓ FID↓ KID↓
4×, Motion blur, σ = 0.05

A+y 14.62 0.244 0.850 3515.79 200.59 134.43
VRT [13] 30.58 0.904 0.173 149.73 68.94 26.95
CodeFormer [27] 27.74 0.817 0.188 596.37 65.90 19.70
RestoreFormer++ [21] 27.88 0.819 0.189 587.97 64.66 18.25
VQFR [10] 27.21 0.808 0.205 836.61 75.00 22.84
DR2E [22] 27.04 0.799 0.213 1135.91 76.98 22.72
DiffPIR [29] 29.55 0.855 0.213 1139.93 51.59 12.41
DDNM [20] 29.21 0.847 0.267 762.26 95.58 42.09
FLAIR (Ours) 31.10 0.890 0.151 126.24 48.21 15.36
FLAIR-SA (Ours) 31.66 0.897 0.152 131.54 49.68 17.97
FLAIR+CodeFormer (Ours) 31.12 0.891 0.147 127.43 47.17 14.89
FLAIR+RestoreFormer++ (Ours) 31.03 0.876 0.146 134.59 43.66 12.25

Table 2. Quantitative results of motion blur on CelebV-Text [25]
(long clips). Best and second-best values for each metric are
color-coded.

resolution of 512 × 512 at least. All data is publicly avail-
able 12. We randomly select 20 clips, each containing 25
high quality sequences from CelebV-HQ.
CelebV-Text [25] dataset is another large-scale, high-quality,
diverse dataset of facial text-video pairs. CelebV-Text com-
prises 70, 000 in-the-wild face video clips with diverse visual
content. All data is publicly available 13. we select 7200 clips
with each containing 20 high quality 512× 512 sequences
for training. For video testing datasets, we randomly chose
125 short clips and 6 long clips from the unused portion
of the CelebV-Text, ensuring no identity overlap with the
fine-tuning datasets. Each short clip contains 25 sequences,
and each long clip contains 100 sequences. As highlighted
by its original authors, the videos that have appeared in
CelebV-HQ are filtered out.
Web Video Clip. We extract four low quality web videos
of around 150 frames from YouTube following [6], which
suffers from complex unknown degradation. The collected
clip is then crop out the face-only region using the same
processes as in 1.6, following [10, 24, 27].

3. Additional Results
We present additional experimental results that were omit-

ted from the main paper due to space limitations. We provide
several video comparisons of our FLAIR in the supplemen-

12https://celebv-hq.github.io/
13https://celebv-text.github.io/

tary materials.

3.1. Additional Numerical Results

Numerical Evaluation on Facial Region Only. Given
that some of the state-of-the-art (SOTA) methods, includ-
ing VQFR, CodeFormer, RestoreFormer++, and DR2E, are
primarily designed for face restoration and utilize separate
backbones for background enhancement, we have conducted
additional numerical comparison for resorting facial region
only. In Table 1, we report the PSNR, SSIM, LPIPS, FVD,
FID, and KID results for 8× and 16× video super-resolution
on the short clips of CelebV-Text and CelebV-HQ datasets,
respectively. As expected, our FLAIR quantitatively outper-
forms all other baseline methods in terms of both perception
and data-fidelity metrics.
Other Quantitative Results. In Table 3, we report nu-
merical results of FLAIR and some baseline methods for
4× video super-resolution on two datasets. Note the better
performance achieved by our FLAIR with different enhance-
ment backbones even under mild degradation. To further
show that there is potential to adapt versatile backbones for
our FLAIR enhancement module, we report numerical re-
sults of our FLAIR using the same pre-trained unconditional
image DPM in (1) as our enhancement backbone for 4×
SR, noisy Gaussian deblurring task. To demonstrate the
adaptability of various backbones for our FLAIR enhance-
ment module, we present numerical results where FLAIR
employs the same pre-trained unconditional image DPM, as
referenced in (1), as its enhancement backbone. For sim-
plicity, we have limited our experiments to 4× SR, noisy
Gaussian deblurring task, deferring a more comprehensive
evaluation to future work. The visual comparisons are shown
in Fig 4. We make an interesting observation that FLAIR us-
ing unconditional image DPM as face enhancement module
can improve the final restoration results in terms of PSNR
and FVD on CelebV-Text.
Evaluation of Running Time. For completeness, we also re-
port the running time of our FLAIR compared with the other

https://celebv-hq.github.io/
https://celebv-text.github.io/


Method CelebV-Text [25] CelebV-HQ [28]
PSNR SSIM LPIPS FVD FID KID PSNR SSIM LPIPS FVD FID KID

VQFR [10] 28.88 0.855 0.160 151.86 46.25 10.34 28.59 0.847 0.156 261.27 66.98 14.50
CodeFormer [27] 29.80 0.867 0.153 107.39 45.46 10.6 29.17 0.856 0.151 219.77 66.42 15.53
RestoreFormer++ [21] 29.06 0.856 0.151 111.53 45.80 10.21 28.96 0.849 0.149 211.02 65.51 12.60
DR2E [22] 28.40 0.836 0.167 189.91 44.49 9.18 27.98 0.800 0.163 378.15 76.39 15.33
DDNM [20] 34.76 0.929 0.118 31.48 37.65 20.28 33.46 0.917 0.129 89.33 55.27 27.89
FLAIR (Ours) 36.05 0.942 0.061 26.57 11.27 2.64 34.46 0.932 0.060 76.18 15.36 1.50
FLAIR+CodeFormer (Ours) 35.10 0.934 0.059 26.44 9.51 0.75 33.47 0.920 0.059 74.56 13.84 0.04
FLAIR+RestoreFormer++ (Ours) 35.42 0.936 0.057 27.22 10.24 1.59 34.17 0.927 0.056 78.07 14.49 0.69

Table 3. Quantitative results of 4× face video super-resolution on two separate video datasets (short clips). Note the quantitative
improvements achieved by integrating our enhancement module within FLAIR, even in cases of mild degradation. Best and second-best
values for each metric are color-coded.

Method Task CelebV-Text [25] CelebV-HQ [28]
PSNR↑ SSIM↑ LPIPS↓ FVD↓ FID↓ KID↓ PSNR↑ SSIM↑ LPIPS↓ FVD↓ FID↓ KID↓

A+y

8×
B

ic
ub

ic

21.40 0.740 0.412 481.22 202.14 218.43 22.25 0.731 0.424 863.97 256.04 257.19
VQFR [10] 26.40 0.801 0.255 229.86 76.46 23.24 25.81 0.777 0.277 482.91 126.86 41.15
RestoreFormer++ [21] 26.48 0.799 0.249 190.48 70.39 16.81 25.98 0.775 0.273 470.12 123.14 38.55
CodeFormer [27] 26.66 0.798 0.259 214.37 76.11 21.39 26.00 0.775 0.278 498.19 126.28 39.34
DR2E [22] 27.89 0.824 0.202 205.48 53.68 13.51 27.49 0.8073 0.207 419.64 91.28 22.86
DDNM [20] 29.95 0.860 0.234 122.03 72.16 44.07 29.00 0.836 0.253 352.08 113.65 64.10
ILVR [7] 29.62 0.852 0.206 145.22 52.72 21.39 28.77 0.829 0.222 350.38 90.95 37.88
FLAIR (Ours) 30.76 0.868 0.159 75.16 41.46 8.11 29.56 0.844 0.157 194.79 66.69 13.79

Table 4. Quantitative results on two face video datasets (short clips). Our method generates better perceptual quality and data-fidelity results
than SOTA face restoration baselines. Best and second-best values for each metric are color-coded.

Method PSNR SSIM LPIPS FVD FID KID
CelebV-Text [25] (short clips)

FLAIR (Ours) 29.87 0.856 0.149 82.82 39.54 8.25
FLAIR+Unconditional DPM (Ours) 30.73 0.865 0.157 81.09 45.48 12.65

CelebV-Text [25] (long clips)
FLAIR (Ours) 31.51 0.858 0.169 175.52 55.88 20.85
FLAIR+Unconditional DPM (Ours) 31.44 0.859 0.163 146.31 55.69 20.95

Table 5. Quantitative results of FLAIR using unconditional image
DPM as enhancement module for 4× super-resolution, Gaussian
deblurring, AWGN σ = 0.05 on CelebV-Text [25].

Method Sampling Time (sec)
DDNM [20] 42.95
ILVR [7] 101.21
FLAIR (Ours) 112.53
FLAIR+CodeFormer (Ours) 137.43
FLAIR+RestoreFormer++ (Ours) 138.01

Table 6. Averaged runtime comparisons between FLAIR and other
image DPM baselines for generating 10 frames. The experiments
have been conducted on A100-80G for 4× SR video JPEG restora-
tion.

image DPM baseline DDNM for 4× SR video JPEG restora-
tion in Table 6. It is worth to note that, while we observe that
FLAIR exhibits relatively slow processing speeds, one may
easily combine FLAIR with existing sampling acceleration
methods, such as staring from refined xK [8], ODE based
solvers [14, 15] and model distillation [18], etc.

3.2. Additional Visual Results

In Figs. 9 - 13, we present additional visual comparisons
of several methods for video super-resolution on CelebV-
Text and CelebV-HQ, where each row contains three frames.
For each case, we also provide the zoomed-in region of the
degraded inputs accordingly. In Figs. 14 - 16, we show

more visual comparisons of several methods for video JPEG
restoration with the zoomed-in regions. For video deblurring,
we present the visual results through Fig.17 to 19. For real-
world web video enhancement task, we assume the LQ inputs
y corrupted by mixed degradation. Since our video DPM
is trained for multi-variant degradation, we only need to
fine-tune the data-consistency module. By fine-tuning the
forward-model such that AA+y ≈ y, we observe that the
degradation of 4× SR with Gaussian kernel of width= 1.6,
JPEG Q = 90 works the best. In Fig. 20, we present more
visual results of our FLAIR compared with several baseline
methods. It is worth to note that our method outperforms the
baselines on real-world data even when the degradation is not
known exactly. One can see from Fig. 20 that our designed
two stage enhancement modules together can improve visual
quality while preserving the data-consistency effectively.

4. Limitations and Societal Impacts
Although FLAIR achieves state-of-the-art performance

in face video restoration, it still has some limitations. For ex-
ample, the complexity of the reverse sampling step increases
with respect to the conditional clip length and image spa-
tial dimension. One possible solution is to develop a more
efficient latent space diffusion for scale ability. As for soci-
etal impacts, similar to other restoration methods, FLAIR
may bring privacy concerns after restoring low-quality face
videos and lead to misjudgments if used for sensitive con-
tents. One possible solution to mitigate this risk is to limit
the usage of the model for sensitive or critical videos.
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Figure 4. Visual comparisons of 4× face video super-resolution with Gaussion blur kernel of width= 2 and AWGN σ = 0.05 on
CelebV-Text [25] (top) and CelebV-HQ [28] (bottom), respectively. Note the perceptual quality improvements of our FLAIR by applying
different backbones for facial region enhancement. Best viewed by zooming in the display.
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Hyperparameter Bicubic 8 × Bicubic 16 × Gaussian Blur Motion Blur JPEG
Model Architecture

Channels 64 64 128 128 128
# Resblocks 1 1 2 2 2
Attention Resolutions (64, 32) (64, 32) (32, 16, 8) (32, 16, 8) (32, 16, 8)
RFE Resolutions (512, 256) (512, 256) (512, 256) (512, 256) (512, 256)
Channel Multiplier (1, 2, 4, 8, 16) (1, 2, 4, 8, 16) (0.5, 1, 1, 2, 2, 4, 4) (0.5, 1, 1, 2, 2, 4, 4) (0.5, 1, 1, 2, 2, 4, 4)
# Attention Heads - - - - -
Head Channels 64 64 64 64 64
Temporal Attention Window Size 7 7 5 5 5

Diffusion Setup
# Diffusion Steps 2000 2000 1000 1000 1000
Noise Schedule Linear Linear Linear Linear Linear
β1 1× 10−6 1× 10−6 1× 10−4 1× 10−4 1× 10−4

βT 0.01 0.01 0.02 0.02 0.02
Image DPM Training

Batch size 64 64 64 64 64
Learning Rate 1.5× 10−4 1.5× 10−4 1.5× 10−4 1.5× 10−4 1.5× 10−4

Weight Decay 0.05 0.05 0.05 0.05 0.05
# Samples 2M 2M 2M 2M 2M
EMA rate 0.9999 0.9999 0.9999 0.9999 0.9999

Video DPM Fine-tuning
Batch size 4 4 4 4 4
Frame Length N 10 10 10 10 10
Learning Rate 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Weight Decay 0.05 0.05 0.05 0.05 0.05
# Samples 0.3M 0.3M 0.3M 0.3M 0.3M
EMA rate - - - - -

Sampling
∥K∥ 25 100 100 65 40
ρt 0.85 0.85 0.25 0.35 0.5
wτ 0.85 0.7 0.75 0.1 0.5
τ 5 5 5 5 5
ζ - - 1000 1000 1000

Table 7. Hyperparameters used in our FLAIR implementations.
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Figure 9. More visual results of 16× video super-resolution on CelebV-Text [25] dataset. Each row consists of three video frames, with an
interval of five frames between each selected frame. The zoomed-in regions of each method are displayed in yellow boxes, along with their
LQ counterparts in pink boxes. Best viewed by zooming in the display.
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Figure 10. More visual results of 16× video super-resolution on CelebV-Text [25] dataset. Each row consists of three video frames, with an
interval of five frames between each selected frame. The zoomed-in regions of each method are displayed in yellow boxes, along with their
LQ counterparts in pink boxes. Best viewed by zooming in the display.
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Figure 11. More visual comparisons of 8× face video super-resolution on CelebV-Text [25]. Each row consists of three video frames, with
an interval of five frames between each selected frame. The zoomed-in regions of each method are displayed in yellow boxes, along with
their LQ counterparts in pink boxes. Best viewed by zooming in the display.
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Figure 12. More visual comparisons of 16× face video super-resolution on CelebV-HQ [28]. Each row consists of three video frames, with
an interval of five frames between each selected frame. The zoomed-in regions of each method are displayed in yellow boxes, along with
their LQ counterparts in pink boxes. Best viewed by zooming in the display.
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Figure 13. More visual comparisons of 16× face video super-resolution on CelebV-Text [25]. Each row consists of three video frames, with
an interval of five frames between each selected frame. The zoomed-in regions of each method are displayed in yellow boxes, along with
their LQ counterparts in pink boxes. Best viewed by zooming in the display.
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Figure 14. More visual comparisons of 4× face video JPEG restoration on CelebV-Text [25] dataset. Each row consists of three video
frames, with an interval of five frames between each selected frame. The zoomed-in regions of each method are displayed in yellow and
green boxes, along with their LQ counterparts in pink and blue boxes. Best viewed by zooming in the display.
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Figure 15. Visual comparisons of 4× face video JPEG restoration on CelebV-Text [25]. Each row consists of three video frames, with an
interval of five frames between each selected frame. The zoomed-in regions of each method are displayed in yellow boxes, along with their
LQ counterparts in pink boxes. Best viewed by zooming in the display.
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Figure 16. Visual comparisons of 4× face video JPEG restoration on CelebV-HQ [28]. Each row consists of three video frames, with an
interval of five frames between each selected frame. The zoomed-in regions of each method are displayed in yellow boxes. Best viewed by
zooming in the display.
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Figure 17. Visual comparisons of 4× face video motion deblurring on CelebV-Text [25]. Each row consists of three video frames, with an
interval of ten frames between each selected frame. The zoomed-in regions of each method are displayed in yellow boxes, along with their
LQ counterparts in pink boxes. Best viewed by zooming in the display.
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Figure 18. Visual comparisons of 4× face video motion deblurring on CelebV-Text [25]. Each row consists of three video frames, with an
interval of ten frames between each selected frame. The zoomed-in regions of each method are displayed in yellow boxes, along with their
LQ counterparts in pink boxes. Best viewed by zooming in the display.
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Figure 19. Visual comparisons of 4× face video motion deblurring on CelebV-Text [25]. Each column consists of seven video frames, with
an interval of ten frames between each selected frame. Best viewed by zooming in the display.
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Figure 20. Visual comparisons of real-world web video enhancement. Each column consists of six video frames, with an interval of around
fifteen frames between each selected frame. Best viewed by zooming in the display.
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