1. Appendix
1.1. Encoding examples

Exclusive encoding example: suppose SUN =
(round, yellow, hot) and BALL = (round, yellow, cold)
are two objects belong to U = (Shape, Color, Temp). by
assigning a random vector to each feature, the exclusive en-
coding maps these two objects into an orthogonal space,
because of a single feature difference between the objects.
In other words:

¢(SUN) = Cround © Cyellow © Chot

1
(b(BALL) - Cround © Cyellow © Ccold ()

6(¢(SUN), ¢(BALL)) = 0)

Inclusive encoding example: suppose SUN =
(round, yellow, hot) and BALL = (round, yellow, cold)
are two objects belong to U = (Shape, Color, Temp). The
include encoding maps these two objects such that it pre-
serves the similarity of the objects:

¢(SUN) = Kshape © Cround @ Kcolor © Cyellow
S5 Ktemp ®© C}Lot

3)
¢(BALL) = Kshape © Cround S Kcolor © Cyellow
2] Ktemp O] Ccold
2
5(6(SUN), 6(BALL)) ~ 5 4)

Similarly, the inclusive encoding of SUN will have
a similarity of around 1/3 with (yellow), 2/3 with
(yellow, hot) and 2/3 with (square, yellow, hot).

1.2. Sequence matching

DNA Sequence matching is one of the key problems in
identifying and analyzing genome data (Fig. 1a). HDIm
transforms inherent sequential processes of genome pattern
matching and alignment to highly parallelizable computa-
tion tasks. Our platform exploits HDC memorization to
encode and represent the genome sequences using high-
dimensional vectors. Then, it imitates the essential func-
tionalities of human memory with hypervector operations.
DNA encoding: Given the base DNA (A, C, G, T),
HDIm assigns a random hypervector to each alphabet:
{A,C,G, T} € {=1,+1}P. Here, we explain how one
can use the base hypervectors to encode a DNA sequence.
Let us consider a short query string, ‘GCAT’. The exclusive
encoding is performed by binding the corresponding base
hypervectors while utilizing the permutation to preserve the
position of each base in the sequence: h = G plé * p%ﬁf *
p3f. The inclusive encoding maps the same sequence us-
ing: h = K, *E+K2*6+K3*6+K4*f, where Ks are
randomly generated position hypervectors. Finally, correla-
tive association encodes a sequence using the same equation

Query Sequence

UCUAG/UAU/C/IA

i Similarity Metrics:
! Search v'Hamming
: - \distance

I

i

enenaoee |1 ([o) ¢ O
Encodin
UGACCUAGACCU => 9| iy coe
Hypervector (W TN NN) |Thousands
Reference) i~ . \sequences
Refinement HDC Library (R) 24

Mapping to

i
Genome H
1
! HDC Space

@ Original Space @Alignment in HDC Space

Figure 1. HDIm application in DNA sequence matching

Exclusive Inclusive Correlative

=
o
i

o ®

2 X 2

Dimension (D)
(2]
=
Dimension (D)
B
=

Dimension (D)

N}
=
[N}
=

0 2 4 6 8 0 2 4 6 8
of Mismatches # of Mismatches

of Mismatches

Figure 2. HDIm Heatmap performing exact and approximate
match in different dimensionality

as inclusive encoding, but it preserves their similarity by
lifting a pre-defined portion of the dimensions for each base
hypervector: h = ¢1(A) * ¢2(p'C) * d3(p>G) * 4 (p°T).
The ¢ functions are non-overlapped and uniformly split D
dimensions into equal sub-dimensions.

Reference generation: HDIm aggregates all encoded se-
quences to generate a reference genome, called HDC Li-
brary. An HDC library consists of several reference hy-
pervectors, where each exploits HDC mathematics to mem-
orize thousands of encoded genome sequences (Fig. 1c).
Similar to the human brain, it is difficult for HDIm to re-
member the information of all accumulated data into each
reference hypervector using single-pass memorization. In
HDIm, the pattern of the most common sequence dominates
the reference hypervector and results in the vanishing of
the less frequent patterns. To better memorize the informa-
tion, HDIm looks at the same object multiple times. During
this iterative process, HDIm boosts the HDC library’s accu-
racy by discarding the mispredicted queries from the corre-
sponding model hypervector and adding them to the right
one.

Inference: HDIm performs pattern matching by checking
the similarity of an encoded protein sequence with the HDC
library. Depending on the encoding, HDIm searches for an
exact or approximate match of a query with each reference
hypervector.

Fig. 2 shows the capability of each encoder to iden-
tify exact and approximate matches. Our evaluation shows
that the exclusive encoding can only support exact pattern
matching. The inclusive encoding is strong on approximate
matching while having low hypervector capacity enabling

exact search. Another weakness of inclusive encoding is its
lack of support in identifying which feature or DNA bases
have been mismatched. Finally, our correlative encoding
supports both exact and approximate matching. In addition,
our approximate match not only reports the number of mis-
matches between the query and stored reference hypervec-
tor but also identifies which features have been mismatched.
This enables an opportunity to support alignment, which is
a more complex and demanding bioinformatic task.

1.3. More discussion and future work

Implementation Efficiency. Unlike conventional deep
learning solutions, HDC’s operations (binding, bundling,
permutation) and the high-dimensional vector space enable
efficient data analysis and learning directly from encoded
data, leveraging hardware acceleration and parallel process-
ing capabilities. Therefore, HDC models are typically much
more computationally efficient compared to DNN models
while neural networks have better feature extraction capa-
bilities that may be suited for more complex tasks; many
works hence opt for a small neural network that prepro-
cesses the data before using HDC model [1,2]. Within the
HDC context, Inclusive and exclusive decoding share sim-
ilar computational complexity; HDIm requires additional
memory and computation for listing and masking, although
both operations can be very efficient and parallelizable.

To establish a concise mathematical analysis of the be-
havior of the model, we have focused our attention on the
relatively more abstract specification of the encoding. We
hope to explore the efficient implementation of HDIm for
future work, as there are subtle choices to be made given
different constraints. For example, prioritizing computa-
tional efficiency over memory efficiency will lead to the
design decision of generating and storing the hypervectors
under the universal indexing set D, effectively costing |D|
dimension per vector. In comparison, a more memory-
efficient approach may store the hypervectors under its in-
dexing set costing at most | D| features, and additional ac-
celeration techniques can be applied to allow faster correla-
tive composition, as the indexing set of two operand hyper-
vectors may differ.

References

[1] Michael Hersche, Mustafa Zeqiri, Luca Benini, Abu Sebas-
tian, and Abbas Rahimi. A neuro-vector-symbolic architec-
ture for solving raven’s progressive matrices. Nature Machine
Intelligence, 5(4):363-375, 2023. 2

[2] Igor Nunes, Mike Heddes, Tony Givargis, Alexandru Nicolau,
and Alex Veidenbaum. Graphhd: Efficient graph classification
using hyperdimensional computing. In 2022 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pages
1485-1490. IEEE, 2022. 2

	. Appendix
	. Encoding examples
	. Sequence matching
	. More discussion and future work

