
Appendices

A. Derivation
We provide the derivation of Eq. (8), (9), (13) and (15) in the main text. For Eq. (8), we have
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where Ct = Bt(1 + w)
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B. Data Preprocessing and Training Hyperparameters
We standardized preprocessing for both the BraTS21 and ATLAS v2.0 datasets. Each 3D subject was normalized by

dividing it by the 99th percentile intensity of foreground voxels, and pixel values were then scaled to the range of [−1, 1]. All
samples are interpolated to 128× 128.



The backbone U-net is adopted from the previous work [2]. Our model is trained on 2 Nvidia A100 GPUs with 80GB
memory. The training hyperparameters are summarized in Tab. 1, and we used the same hyperparameters for both dataset.

Diffusion steps 1000
Noise schedule linear

Channels 128
Heads 2
Attention resolution 32,16,8
Channel multiplier 1, 1, 2, 3, 4
Dropout 0.1
EMA rate 0.9999

Optimiser AdamW
Learning rate 1e−4

β1, β2 0.9, 0.999

Global batch size 64
Null label ratio 0.1

dropout 0.1

Table 1. Training hyperparameters used in our method.

C. Fixed Guidance Selection and Segmentation
We illustrate the fixed guidance selection in Algorithm 1 and outline the complete segmentation process in Algorithm 2.

Algorithm 1: Selection of fixed guidance w∗

Input: n sorted candidates [w1, ..., wn], validation set with image-level labels
for each candidate wi:

calculate cosine similarity for each sample in validation set with Eq. 18
classify each samples in validation set with cosine similarity threshold Coswi

get the maximal classification accuracy Accwi using the optimal threshold Cos∗wi

end for
w = argmaxw Accwi

w∗ = wi > w with Accwi

Accw
≈ 0.98

Cosw∗ = Cos∗wi
# corresponding threshold

Return w∗, Cosw∗

D. Gradient for Segmentation
We investigate the gradient ∇xt log pθ (h|xt) as the SAMs for segmentation, while keep other settings unchanged. Here,

we use the same BraTS21 testing data, focusing on the unhealthy setup with four configurations: (i) DDIM ∇2 log pθ: the
gradient is directly used as SAMs for segmentation; (ii) DDIM ∇2 log pθ|t=te : only the gradient at the end step is ued for seg-
mentation; (iii) DDIM C2

t ∇2 log pθ: the weighted gradient is used as SAMs; and (iv) DDIM B2
t ((1 + w)∇ log pθ +∆st)

2:
the original SAMs.

The quantitative results are exhibited in Tab. 2. We note that the performance of other configurations is significantly lower
compared to using the original SAMs. The last setup DDIM Ct∇ log pθ, the weighted gradient, achieved better segmentation
results compared to non-weighted gradient SAMs. This is attributed to the weight Ct, a monotonically increasing function.
The SAMs with anomalous regions are more weighted. Also, the error term ∆st used in the original SAMs is not considered
here, which may alleviate the false detection by the implicit classifier.



Algorithm 2: The full segmentation process for a single input x0

Input: fixed guidance w∗, input x0

for each time step t
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end for
te = argmaxt Mt # find the end step
H = 1

te

∑te
t=1 St # aggregated SAMs Eq. 20

Obtain the quantile Q∗ using Algorithm 1 from the main text
predicted pixel-level labels = H ≥ Q∗

Return predicted pixel-level labels

Methods DICE IoU AUPRC

DDIM ∇2 log pθ 42.7±0.2 30.6±0.1 42.0±0.0
DDIM ∇2 log pθ|t=te 53.1±0.0 40.4±0.0 58.8±0.0
DDIM C2

t ∇2 log pθ 57.2±0.1 45.8±0.1 70.3±0.0
∗DDIM B2

t ((1 + w)∇ log pθ +∆st)
2 61.5±0.0 51.0±0.1 75.5±0.1

Table 2. Segmentation performance on unhealthy samples from BraTS21 dataset using the gradient ∇xt log pθ (h|xt) as the SAMs. The
last setup with ∗ is the original SAMs.

E. More Qualitative Results
We provide more qualitative results for the BraTS21 and ATLAS v2.0 datasets in Fig. 1. It further shows the effective-

ness of our method in detecting anomalies and segmenting them. The signal strength of the anomalies is enhanced by the
aggregation of SAMs, leading to more accurate segmentation results.

F. Postprocessing for Segmentation
After we obtain the anomaly map, we apply a median filter [1] with kernel size 5 to effectively enhance the performance.

Then, we apply the connected component filter to remove the small connected components which is regarded as noise. We
apply the same postprocessing to all methods for fair comparison.

G. Discussion and Limitations
All methods showed better results on the BraTS21 dataset than on the ATLAS v2.0 dataset. This disparity arises because

DMs are more adept at identifying anomalies that exhibit significant frequency differences, such as tumors on FLAIR MRI,
compared to the surrounding healthy tissue. In this case, the difference of healthy and unhealthy distribution is easier to
be captured by DMs. In contrast, the ATLAS v2.0 dataset, which consists of T1 MRI, presents more challenging scenarios
for anomaly detection due to the subtle frequency differences between healthy and unhealthy regions. During the inference
stage, the implicit classifier struggles to accurately capture the anomalous regions, contributing to the less consistent signal of
anomalous regions in the SAMs. This inconsistency can lead to the mixing of signals from falsely detected healthy regions,
resulting in lower detection accuracy.

Our selection method is specifically designed for the weakly-supervised setting, where unhealthy samples are available
for training the guided diffusion model. In unsupervised settings, the unguided diffusion model is typically trained only
on healthy samples and evaluated on unhealthy samples. In this scenario, the unguided forward process (UFP) of samples
through the diffusion model is not possible, which is a crucial aspect of our method. We leave the exploration of unsupervised
settings for future work.
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Figure 1. Qualitative Comparison of Anomaly Maps and Segmentation. (a) From the BraTS21 dataset and (b) from the ATLAS v2.0
dataset. The first column displays the original input images, and the second column shows the corresponding ground truth for anomaly
segmentation. Subsequent columns present the anomaly maps and segmentation results obtained using our method, AnoFPDM with the
DDIM setting, alongside those from the second and third best comparative methods. Each row represents a different sample.
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