
Supplementary Material

1. Energy loss module physics formalism
The initial virtuality of the partons will have a maximum

limit set by the preset distribution. These will then be intro-
duced into the MATTER event generator. In MATTER, a
single hard parton created at a point r with a forward light-
cone momentum p+ = (p0 + n̂ · p⃗/

√
2) where n̂ = p⃗/|p⃗ |

starts a virtuality-ordered shower.
To ascertain the real virtuality (t = Q2) of the given parton,
one may sample a Sudakov form factor,
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where Φ represents a sum over phase factors that depends
on ζ+, p+, and Q. The transport coefficient q̂ is evalu-
ated at the location of scattering r⃗ + n̂ζ+, P (z) is the vac-
uum splitting function, and ζMAX+ is the maximum length
( 1.2τ+f ), which is used to sample the actual splitting time of
the given parton with τ+f as the mean light-cone formation
time τ+f = 2p+/Q2 [10]. After determining Q2, z can be
sampled using the splitting function P (z). The transverse
momentum of the created daughter pair can be estimated us-
ing the difference in invariant mass between the parent and
daughters. This method is repeated until a given parton’s
Q2 reaches a specific value for Q2

0.
Below Q2

0 the jet might be better characterized by another
energy loss module such as LBT, which can evolve accord-
ing to the linear Boltzmann equation. Q0 is the virtual-
ity separation scale. For our dataset, the medium-induced
gluon spectrum
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∫
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dNg
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, (2)

where the differential spectrum of the radiated gluon is
taken from the higher-twist energy loss formalism [24, 32,
40]:
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where x and k⊥ are the fractional energy and transverse
momentum of the emitted gluon with respect to its parent
parton, αs is the strong coupling constant, CA = Nc is the
gluon color factor, P (x) is the splitting function, q̂ is the
transport coefficient, ti denotes the production time of the
given parton, and τf = 2Ex(1 − x)/k2⊥ + x2m2 is the
formation time of the radiated gluon with E and m as the

parton energy and mass, respectively. With these scatter-
ing rates, the Monte Carlo method is applied to determine
whether scattering happens within a given time step. In this
work, we develop an ML model to determine the energy
loss model for different values of Q0 and αs.

2. Heavy ion collisions

In this section, we show a visualization that depicts the
multi-stage approach that is leveraged in the JETSCAPE for
jet evolution in Figure 8.

3. Sample events

In this appendix, we provide sample events for configu-
rations one and two of the dataset, depicted in Figures 10
and 11.

4. Calculating accuracy for VGG16 training
for 50 epoch Config. #9 - Test Data

One of the methods for assessing classification models is
accuracy, which is simply the percentage of correct predic-
tions. For binary classification, accuracy can also be calcu-
lated in terms of positives and negatives as in equation (4)

Accuracy =
TP + TN

TP + TN + FP + FN
, (4)

where TP = True Positives, TN = True Negatives, FP =
False Positives, and FN = False Negatives. Table 3 shows
an example confusion matrix (VGG16 Model – 50 epoch -
Config. #9 – Test data) to calculate model’s accuracy. The
accuracy is 0.9429, or 94.29% (94 out of 100 instances
yielded correct predictions) regarding equation 4.That indi-
cates that our energy loss module classifier is very effective
in detecting between Matter and Matter-LBT.

Table 3. Confusion Matrix for VGG16 Model – 50 epoch - Config.
#9 – Test data

Predicted
MATTER MATTER-LBT

MATTER TP: 56192 FP: 3039

MATTER-LBT FN: 3808 TN: 56961

5. VGG16 training for 30 epochs

In this appendix, we provide the detailed analysis for
VGG16 traning for 30 epochs. Table 4 demonstrates the
loss and accuracy diagrams and figure 9 demonstrates the
accuracy for nine configurations.



Figure 8. Multi-stage approach in heavy-ion collisions, credit to Y. Tachibana et. al. from JETSCAPE collaboration..

Table 4. VGG16 model with 30 epochs: accuracy.

Accuracy (%)

Train Validation Test

Config No. 1 89.395 89.4242 89.1383
Config No. 2 91.031 91.0596 91.5408
Config No. 3 84.5407 84.6833 84.4558
Config No. 4 76.0095 76.1054 75.9908
Config No. 5 91.7856 91.8829 91.6892
Config No. 6 94.367 94.3083 94.3483
Config No. 7 86.5311 86.41 86.2825
Config No. 8 93.029 93.0608 93.0133
Config No. 9 94.1714 94.1717 94.0925

Table 5. VGG16 trained models for 50 epochs early stopping and
their converged accuracy

Configuration No. 2 3 4 5 7 8

Accuracy (%) 92 93 90 93 89 93

6. Early stopping on VGG15 models

To prevent overfitting early stopping techniques has been
applied on the training models. Table 5 shows a detailed ac-
curacy report on each model when it confronted early stop-
ping on VGG16 for 50 epochs.

Figure 9. VGG16 model with 30 epochs: accuracy & loss dia-
grams.

7. Accuracy central tendency and variation
analysis of machine learning models

In the pursuit of evaluating the efficacy and applicability
of the ML-JET dataset, a series of experiments were con-
ducted employing diverse machine learning methodologies.



Figure 10. Dataset: Sample events: Config No. 1 Matter and Matter-LBT.

These encompassed logistic regression, decision trees,
K-Nearest Neighbor (KNN), Support Vector Machine
(SVM) including its linear variant (Linear SVC), and Ran-
dom Forest, each deployed with various architectures and
configurations. Training these models on the ML-JET
dataset, we gauged their performance against a held-out test
set.

Figure 5 illustrates the binary classification accuracy
along with error bars for five distinct machine learning mod-
els trained over 5-fold cross-validation and employing four
variations in dataset size ranging from 1K to 1000K in-
stances. Our findings underscore the ML-JET dataset’s pro-
ficiency, particularly in logistic regression models for tasks
pertaining to energy loss module classification. These mod-
els achieved an average accuracy of approximately 87%,
surpassing the performance of other models. However, it’s
noteworthy that the accuracy of logistic regression models
plateaued at around 87% even with an increase in dataset
size from 105 to 106, prompting consideration for alterna-
tive approaches within deep learning paradigms.

Linear SVC, Random Forest, KNN, and Decision Tree
techniques followed in rankings from 2 to 5 respectively,
in terms of their accuracy performance. Similar to logis-
tic regression, Linear SVC exhibited a plateauing trend in
accuracy, albeit at around 80% on average. Random For-

est displayed a linear increase in accuracy with the expan-
sion of the dataset size. However, extrapolating this trend
suggests an immense dataset size requirement of 1010 in-
stances to merely attain logistic regression accuracy levels
with a dataset size of 106. KNN and Random Forest exhib-
ited analogous accuracy trends, showing improvements be-
tween 103 to 104 instances, with marginal gains thereafter,
boasting approximately 2-3% better performance.

8. Analysis of point cloud models

Upon scrutinizing the limitations of contemporary ma-
chine learning models in terms of computational capacity
and accuracy, our focus shifted towards exploring cutting-
edge deep neural network methodologies. Specifically, we
delved into training PointNet [29] models for addressing the
energy loss binary classification problem, employing vari-
ous settings and configurations.

Figure 7a presents a comprehensive overview of the bi-
nary classification accuracy along with error bars for five
distinct machine learning models, trained over 10 folds, 32
epochs, and with dataset sizes ranging from 1K to 1000K
instances. The results obtained are highly encouraging. No-
tably, a linear correlation is observed between dataset size
and average accuracy. Furthermore, as the dataset size in-



Figure 11. dataset: Sample events: Config No. 2 Matter and Matter-LBT.

creases, the standard deviation of accuracy diminishes, in-
dicating improved stability in accuracy metrics. Notably,
point clouds achieve an average accuracy of approximately
88% with a dataset size of 105. Remarkably, this outper-
forms logistic regression on a dataset size of 106, showcas-
ing the consistent and linear progress achieved by PointNet
models.

Additionally, Figure 7b illustrates the trajectory of train-
ing loss across epochs, demonstrating a consistent decrease,
indicating effective learning from the training data. Con-
versely, the validation loss exhibits an initial decrease but
later manifests fluctuations, suggestive of potential overfit-
ting as the training progresses. Towards the latter stages of
training, a slight increase in validation loss further corrobo-
rates the presence of overfitting tendencies.

The training accuracy steadily ascends with each epoch,
as anticipated due to the model’s learning process. How-
ever, the validation accuracy showcases a plateauing trend
after a certain epoch, indicating limited improvement in per-
formance on unseen data beyond a certain point.

The widening chasm between training and validation
loss serves as a telltale sign of overfitting, wherein the
model excels on the training data but struggles to general-
ize to unseen instances. Despite these challenges, the final
validation accuracy hovers around 86-87%, a commendable

achievement within the realm of heavy ion physics and its
specific requirements.

9. MNIST Net accuracy analysis
After training the MNIST model for 50 epochs, it results

in 82.23% average accuracy on the test data over all nine
configurations as shown in Figure 3 and Table 2. One can
try tweaking this model with different settings to get a better
score. An obvious tweak is increasing the epochs, which
improves accuracy at the expense of time, although modest
improvement is expected given the sophisticated features of
the energy loss module.

10. Deep models precision, recall, and F1-score
analysis

In the realm of machine learning and statistical analysis,
precision, recall, and F1-score are fundamental metrics used
to evaluate the performance of classification models. Preci-
sion refers to the accuracy of positive predictions made by
the model, measuring the proportion of true positive predic-
tions among all positive predictions. Recall, on the other
hand, assesses the model’s ability to identify all relevant in-
stances, representing the proportion of true positive predic-
tions among all actual positive instances in the dataset.



Table 6. MNIST Net model evaluation: precision, recall, F1-score

Precision (%) Recall (%) F1-Score (%)

C
on

fig
N

o.

M
A

T
T

E
R

L
B

T

M
A

T
T

E
R

L
B

T

M
A

T
T

E
R

L
B

T

1 87 92 92 86 89 89
2 95 89 88 95 91 92
3 92 79 75 94 83 86
4 73 79 82 70 76 76
5 95 89 88 95 91 92
6 93 96 96 93 94 94
7 82 92 93 79 87 85
8 94 92 92 94 93 93
9 95 93 93 95 94 94

F1-score, often considered the harmonic mean of preci-
sion and recall, offers a balanced measure that combines
both metrics into a single value, providing a comprehensive
assessment of the model’s predictive performance.

For the MNIST Net model, we notice variations in
performance metrics across different configurations in Ta-
ble 6. Generally, the MATTER configuration tends to ex-
hibit higher precision compared to the LBT configuration,
indicating its ability to classify positive instances more ac-
curately. However, the LBT configuration demonstrates
higher recall values, suggesting its effectiveness in captur-
ing a higher proportion of actual positive instances. This
trade-off between precision and recall is reflected in the
F1-score, where both configurations achieve similar scores,
balancing the precision-recall trade-off. Notably, Config
No. 6 stands out with exceptionally high precision, recall,
and F1-score values, indicating its superior performance
across both configurations.

Similarly, for the VGG16 Net model, we observe varia-
tions in performance metrics across different configurations
in Table 7. Like the MNIST Net model, the MATTER con-
figuration tends to exhibit higher precision, while the LBT
configuration demonstrates higher recall values. Again, the
F1-score values indicate a balance between precision and
recall for both configurations. Interestingly, Config No. 6
appears to perform exceptionally well across both configu-
rations, achieving high precision, recall, and F1-score val-
ues. These observations suggest that certain configurations
may be more suitable for specific tasks within the energy
loss module binary classification problem.

In Figure 12, we demonstrated the PointNet’s mean error
bar across dataset sizes for precision, recall, and F1-score. It
exhibits improving trends, with precision ranging from 0.55
to 0.8121, recall from 0.635 to 0.81005, and F1-score from

Table 7. VGG16 Net model for 50 epochs evaluation: precision,
recall, F1-score.

Precision (%) Recall (%) F1-Score (%)
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3 92 79 75 94 83 86
4 73 79 82 70 76 76
5 95 89 88 95 91 92
6 93 96 96 93 94 94
7 82 92 93 79 87 85
8 94 92 92 94 93 93
9 95 93 93 95 94 94

0.55 to 0.8121. Smaller datasets tend to have larger error
bars, with precision showing slightly higher variability than
recall or F1-score. However, as dataset size increases, er-
ror bars decrease, indicating more precise performance es-
timates.

Figure 12. PointNet models precision, recall, and F1-score mean
and error bar.


