
Model Weights Reflect a Continuous Space of Input Image Domains

Supplementary Material

6. Synthetic Dataset

The synthetic dataset is based on Cityscapes [9]. The
different domains are simply colour alterations according to
certain channels and strengths, which is achieved by adding
a constant value to the entire image. More concretely, a par-
ticular fraction f → [0, 1] of the maximal pixel value (255)
is added to each pixel along the involved colour channels.
Algorithm 1 gives an overview of the procedure.

Algorithm 1 An algorithm with caption
procedure COLOURADJUST(img, channels, f )

for c → channels do
img[c] ↑ img[c] + f ↓ 255
img[c] ↑ clip(img[c], 0, 255)

end for
end procedure

There are six colours: red (red channel adjustment), yel-
low (red and green channels), green (green channel), cyan
(green and blue channels), blue (blue channel), and purple
(red and blue channels). Additionally, the alteration is done
in different strengths where f → {0.2, 0.4, 0.6, 0.8}. This
produces a total of 24 domains, in addition to the unaltered
one. Figure 13 shows an example image of each domain
(the first column is considered as one, since it is simply the
set of unaltered images).

Figure 13. Example of all the synthetic colour adjustments for
each combination of colour channels (red, red and green, green,
green and blue, blue, and red and blue) and each of the strength
factors (0.2, 0.4, 0.6, 0.8).

Figure 14. Example of all the real weather domains. Top to bot-
tom: Day (Cityscapes), Fog (ACDC), FOG (Foggy Cityscapes
- Low), FOG (Foggy Cityscapes - Medium), FOG (High), Rain
(Rainy Cityscapes - High), Rain (Rainy Cityscapes - Medium),
Rain (Rainy Cityscapes - Low), Rain (BDD), Rain (ACDC), Snow
(BDD), Snow (ACDC), Night (ACDC), Night (BDD), and Dawn
(BDD).



R.2 R.4 R.6 R.8 RG.2 RG.4 RG.6 RG.8 G.2 G.4 G.6 G.8 *.0

All 48.9 49.6 49.2 46.8 49.9 49.2 48.0 44.2 50.2 50.0 49.7 48.4 48.0
Experts 51.2 51.1 51.0 50.7 51.3 50.6 50.2 49.0 51.2 51.2 50.7 50.3 53.9

GB.2 GB.4 GB.6 GB.8 B.2 B.4 B.6 B.8 RB.2 RB.4 RB.6 RB.8 Avg

All 48.9 49.6 48.7 45.7 48.7 49.0 48.6 48.1 50.2 49.8 49.2 46.6 48.6
Experts 51.1 50.7 50.1 48.1 51.7 50.8 50.5 49.7 51.2 51.6 50.3 49.1 50.7

Table 5. Results on the synthetic colour adaptations. Altered channels are indicated by the letter (RGB mode) and the decimal indicates
the strength of the alteration. ”Experts” indicates the models trained on the respective alteration only, ”All” indicates the model train on all
channel variations. Best performance per column is in bold. *.0 indicates the original unaltered dataset.

7. Real Dataset
The real data mix is made up of different datasets that

provide either explicit weather splits or additional metadata
to create them. Figure 14 shows a few example images of
each domain.

Clear Day. This domain is represented by Cityscapes [9].
It contains road scenes from German and Swiss cities la-
belled for semantic segmentation. Bounding boxes are
obtained by extracting the extreme points of the instance
masks.

Fog. There are four different foggy image splits. Three
of them come from Foggy Cityscapes [20], a dataset con-
taining the same images as Cityscapes but with a synthetic
fog augmentation. The fog is controlled by the parame-
ter ω, and the dataset includes images with three different
strengths ω → {0.005, 0.01, 0.02} (corresponding to a low,
medium, and high level of fog, respectively), which this
work uses as three different domains. While it is handy to
have such a gradation in fog, it is still a synthetic addition,
which is often quite visible. The fourth fog split comes from
ACDC [21], a dataset of real images taken in Swiss cities.
While these images are real, the fog in them is very faint.
Which is why they closely resemble overcast daytime im-
ages.

Rain. There are five rainy image splits. Three of them
come from Rainy Cityscapes [13], a synthetic rain adap-
tation of Cityscapes very similar to Foggy Cityscapes,
now controlled by the parameters (ε,ω, dropsize) →
{(.01, .005, .01), (.02, .01, .005), (.03, .015, .002)} (corre-
sponding to a low, medium, and high intensity of rain, re-
spectively). Again, this work keeps the three levels as sep-
arate splits within the rain domain. The augmentation also
uses twelve different rain patterns for each image at each
rain intensity, which have all been used in this work (i.e. no
distinction has been made on the basis of rain pattern). The
fourth split is composed of real rain data from ACDC, and

the fifth split comes from BDD100k [26] using the metadata
on weather and time of day, in this case rainy and daytime,
respectively.

Snow. There are two snow splits. One from ACDC. One
from BDD100k, with metadata corresponding to snowy
weather and daytime.

Night. There are two nighttime splits. One from ACDC
and one from BDD100k. The latter uses the data annotated
as night and clear, partly cloudy, or overcast weather.

Dawn. Data for the domain of dawn comes from
BDD100k, with metadata annotations for weather of clear,
partly cloudy, or overcast and time of day indicating
dawn/dusk.

8. Fine-tuning experiments
Model. The model used for the experiments is an FCOS
[24] (where the centredness is based on the class branch),
with a VGG-16 backbone [22] and an FPN. The loss func-
tion is based on the Harmonious Loss from [10], where only
the supervised component is used. Tables 6 and 7 show ad-
ditional configuration parameter values for the model and
loss, respectively.

Parameter Value

Trainable layers 5 (all)
Returned layers 3, 4, 5
Extra blocks P6 and P7
NMS threshold 0.6
Score threshold 0.05
Center sampling radius 0

Table 6. Parameter values used to configure the FCOS model.



Parameter Value

ε 0.75
ϑ 2
Class weight 1
Loss type IoU

Table 7. Parameter values used to configure the loss function.

Pre-training. The model is pre-trained on Cityscapes [9]
starting from the Pytorch (v2.5) Imagnet backbone weights.
The best checkpoint is used to initialize the model for fine-
tuning. Performance is measured according to mean Aver-
age Precision (mAP) with a threshold of 0.5 (i.e. mAP50)
according to the method used for COCO. Table 8 shows the
relevant training parameters that were used. As augmenta-
tions the training uses: horizontal flipping (probability 0.5),
vertical flipping (probability 0.2), colour jitter (probability
0.5, brightness 0.4, contrast 0.4, hue 0.1, and saturation 0.4),
grayscale (probablility 0.2), Gaussian blur (probability 0.5,
ϖ = (0.1, 2)), scaling (probability 0.5, range factor [0.8,
1.5]), and random erasing (probability 0.7). Finally, all in-
puts are scaled to the shortest edge length of 800px or max-
imum size of 1333px, and the image values are normalised
to the range [0, 1] by dividing by 255.

Parameter Value

Iterations 60k
Learning rate 0.008
Batch size 8

Optimiser
Method SGD
Momentum 0.9
Weight decay 5 ↔ 10→4

Learning rate
scheduler

Method Warmup Step
ϑ 0.1
Milestones 20k, 40k
Warm-up factor 0.001
Warm-up iterations 1k
Warm-up method Linear

Table 8. Parameter values used to configure the training.

Synthetic fine-tuning. Fine-tuning refers to the creation
of expert models on each individual domain. This is done
by initialising the model with the best weights from the pre-
training and starting a new training with only data from a
single colour and strength (e.g. red with adjustment factor
0.8, as explained in Sec. 6). Importantly, during this stage
only the backbone (including FPN) is trained, the heads are
frozen. Also note that none of the models see any unal-

tered images during this training. The model that is trained
on all input variations simply samples data from the joint
dataset containing all images from all domains (but not the
unaltered ones). The training uses the same augmentations
as the pre-training minus the colour jitter and grayscale, to
prevent any alterations to the domain information or provide
information from other domains. Table 9 shows the training
parameters used for this stage.

Parameter Value

Iterations 10k
Learning rate 0.001
Batch size 8

Optimiser
Method SGD
Momentum 0.9
Weight decay 5 ↔ 10→4

Learning rate
scheduler

Method Warmup Step
ϑ 0.1
Milestones 4k, 8k
Warm-up factor 0.001
Warm-up iterations 1k
Warm-up method Linear

Table 9. Parameter values used to configure the synthetic data fine-
tuning training.

Parameter Value

Iterations 15k
Learning rate 0.0008
Batch size 8

Optimiser
Method SGD
Momentum 0.9
Weight decay 10→4

Learning rate
scheduler

Method Warmup Step
ϑ 0.1
Milestones 3k, 10k
Warm-up factor 0.001
Warm-up iterations 1k
Warm-up method Linear

Table 10. Parameter values used to configure the real data fine-
tuning training.

Real data fine-tuning. The fine-tuning of models on real
data is fully analogous to the fine-tuning on synthetic data,
with some small changes to training parameters as shown
in Tab. 10. The augmentations are the same as in the pre-



training stage. To strengthen the idea that the weight space
is distributed according to input data, three separate models
are trained per domain. As shown, they converge to similar
points in weight space with very similar performance.

9. Domain Arithmetic Analysis
This section contains the full tables of results on the syn-

thetic dataset. Tab. 11 contains the results for the linear
interpolation of secondary colours (yellow, cyan, and ma-
genta) using two primary colour experts (red, green, and
blue). Table 12 shows the performance comparison be-
tween the experts, the jointly trained model, and the adap-
tive model on all synthetic data domains. Table 13 shows
the results of strength interpolation results of the adaptive
method compared to the model trained on all domains. The
domain encoder used to learn the PC projections has the
following structure (where ChannelMean() simply takes the
mean per channel):

Sequential(
(0): Conv2d(3, 20, kernel_size=(3, 3), stride=(3, 3))
(1): ReLU()
(2): Conv2d(20, 20, kernel_size=(5, 5), stride=(5, 5))
(3): ReLU()
(4): AvgPool2d(kernel_size=4, stride=4, padding=0)
(5): Conv2d(20, 20, kernel_size=(5, 5), stride=(5, 5))
(6): ReLU()
(7): ChannelMean()
(8): Linear(in_features=20, out_features=20, bias=True)
(9): ReLU()
(10): Linear(in_features=20, out_features=20, bias=True)
(11): ReLU()
(12): Linear(in_features=20, out_features=10, bias=True)

)



RG.8 RG.8 (Lin.) RB.8 RB.8 (Lin.) GB.8 GB.8 (Lin.)

Source 8.8 8.8 5.6 5.6 19.5 19.5
Expert X.8 11.4 15.9 15.0 12.6 23.3 30.5
Expert Y.8 9.5 25.9 8.6 18.8 17.7 12.7
Interpolation 8.1 22.8 29.1 20.6 25.4 31.4
Expert XY.8 49.8 37.3 49.9 36.4 48.8 40.0

Table 11. Linear interpolation results of single colour channel models tested on two channel adjustments. “Expert X” and “Y” for the
combination “XY” mean the first and second single channel experts (i.e. for RG, X is R and Y is G). “Lin.” indicates linearised training
following Ortiz-Jimenez et al. [18], opposed to standard training without any constraints. “Source” indicates the pre-trained model that has
not seen any altered data.

R.2 R.4 R.6 R.8 RG.2 RG.4 RG.6 RG.8 G.2 G.4 G.6 G.8 *.0

All 48.9 49.6 49.2 46.8 49.9 49.2 48.0 44.2 50.2 50.0 49.7 48.4 48.0
Adaptive 50.0 50.7 50.6 50.1 51.1 50.9 47.6 46.0 50.7 50.1 50.0 49.3 50.6
Experts 51.2 51.1 51.0 50.7 51.3 50.6 50.2 49.0 51.2 51.2 50.7 50.3 53.9

GB.2 GB.4 GB.6 GB.8 B.2 B.4 B.6 B.8 RB.2 RB.4 RB.6 RB.8 Avg

All 48.9 49.6 48.7 45.7 48.7 49.0 48.6 48.1 50.2 49.8 49.2 46.6 48.6
Adaptive 48.9 50.4 49.3 46.9 50.0 50.8 49.2 49.2 51.3 51.1 49.4 46.9 49.6
Experts 51.1 50.7 50.1 48.1 51.7 50.8 50.5 49.7 51.2 51.6 50.3 49.1 50.7

Table 12. Performance comparison (mAP) between the experts, the jointly trained model (“All”), and the adaptive method that learns to
recombine PCs. Altered channels and strength are indicated by the letter (RGB mode) and the decimal, respectively. “*.0” indicates the
original unaltered dataset. Best performance per column is bolded, second best is underlined (models are considered to be on par if the
difference is less than 0.5).

R.1 R.3 R.5 R.7 RG.1 RG.3 RG.5 RG.7 G.1 G.3 G.5 G.7

All 48.3 49.5 49.5 47.8 48.6 49.8 48.6 46.8 50.0 50.1 49.9 49.3
Adaptive 49.0 50.3 50.5 50.2 49.9 51.2 50.0 48.0 49.4 50.5 50.0 49.7

GB.1 GB.3 GB.5 GB.7 B.1 B.3 B.5 B.7 RB.1 RB.3 RB.5 RB.7

All 48.5 50.0 49.3 47.4 48.2 49.2 49.0 48.2 48.2 50.1 49.8 48.0
Adaptive 48.9 50.2 50.1 48.5 49.4 51.6 49.4 49.1 50.0 51.2 50.4 47.8

Table 13. Performance comparison (mAP) between the experts, the jointly trained model (“All”), and the adaptive method that learns to
recombine PCs. Altered channels are indicated by the letter (RGB mode) and the decimal indicates the strength of the alteration. “*.0”
indicates the original unaltered dataset. Best performance per column is bolded, second best is underlined (models are considered to be on
par if the difference is less than 0.5).



Figure 15. Model performance as a function of number of Principal Components (PCs) used for the reconstruction on the red domains
(adjustment strength decreases left to right). The dashed line (- -) indicates the original performance, the dotted line (..) indicates the
performance of the model trained with all data, and the dash-dot line (-.) indicates the performance of the model trained on unaltered
images.


