
A. Encoding Network Modules
This section provides the implementation details for the

modules constituting our specification encoding network as
discussed in §3.1. A typical Fourier domain augmentation
pipeline can look as follows:

x→F→FFTshift→+δ̂(perts)→IFFTshift→F̄1→x′.

The FFTshift operation shifts the zero-frequency compo-
nent to the center of the DFT spectrum, thereby offering a
more interpretable view of the spectrum for Fourier anal-
ysis and perturbation set design, with the IFFTshift opera-
tion reverting this spectrum shift afterwards. To avoid the
IFFTshift operation in the verification path, the δ̂ defined
as part of the specification design is manually IFFT-shifted
and then fed to the encoding network. Therefore, the en-
coding modules explained in this section expect their DFT
coefficient space inputs to have been IFFT-shifted and not
centered around the lowest frequency. Also, the DFT coef-
ficients are fed to the encoding network as a stacked vec-
tor of its Cartesian coordinates [Rx̂

Ix̂]. Overall the encoding
pipeline for single input specifications is:

E(ζ̂, x) = CN ○ PM(x) ○ IDFT ○CBCT(ζ̂),

and for the two input-conditional specifications is:

E(ζ̂1, ζ̂ ′2) = CN ○ IDFT ○ SI(ζ̂1, ζ̂ ′2).

The modules featuring in E above are detailed below.

Channel Broadcaster (CB) module The purpose of this
module is to encode white-light illumination changes. It is
constructed using a broadcasting, unit-valued, 1×1 Convo-
lution layer, i.e., a convolution layer with kernel size and
kernel weight of one, no bias, one input filter that accepts
the perturbation to broadcast and the output filters equal to
the number of color channels in the input data. The effect
of including this module in the encoding network can be
visually verified from Figure 7.

Perturbed images with Channel Broadcasting Perturbed images without Channel Broadcasting

Figure 7. Perturbed images with and without Channel Broadcast-
ing. It could be used when generalizing against whitelight illu-
mination changes, and may be skipped when generalizing against
color-tone changes that are more common in domain changes.

Conjugate Transpose (CT) module This module can be
optionally included in the encoding network when deal-
ing with real-valued perturbations. Given the property that

the DFT of real-valued is conjugate symmetric, this mod-
ule constructs the complete Fourier domain perturbation set
from one half of the Fourier coefficients specified to de-
fine an input perturbation set. For this, it uses flip opera-
tions to mirror the specified coefficients in Cartesian form
δ̂ ∈ RN×N = {R(δ),I(δ)} and N is odd, as follows,
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,

where f c
axes(x) denotes a flip operation on x along the axes

specified in subscript along with multiplication by the con-
stant c = {1,−1} for the real and imaginary components of
δ̂ resp. Since we already ensured low-dimensionality for
our Fourier domain specifications by the use of the mask
M̂ (2), we did not use this module for further dimensional-
ity reduction in our verification experiments.

The CB and CT modules described above are together
referred to as CBCT in our encoding network definition.

IDFT module The purpose of the IDFT module is to im-
plement the Inverse Discrete Fourier Transform as a net-
work module that can be prepended to a network to be ver-
ified and allow bound propagation through it by the SoA
verifiers. It is the main module of the proposed encoding
network and features in the verification path for all specifi-
cations. The input to the module is a nonuniform interval set
in the DFT coefficient space, expressed as the stacked vec-

tor of its Cartesian planes ζ̂ ∶= [R(δ̂)
I(δ̂)
]. Since most verifiers

do not support bound propagation through Complex-valued
layers, we implement the IDFT using two real-valued linear
layers. Formally, we implement 2d-IDFT as:

δ ∈ RN×N
= R (Ω1

N ζ̂Ω1T
N ) , (6)

where following (I)DFT definitions in §2,
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,

where ωk×l
c = eιc2π( k

H +
l
W ) with c = −1,1 and C =N2,1

for DFT and IDFT respectively. The inner Ω1
N ζ̂ is imple-

mented using the Complex multiplication property, x̂1x̂2 =
(R(x̂1)R(x̂2) − I(x̂1)I(x̂2))+ ι (I(x̂1)R(x̂2) +R(x̂1)I(x̂2)) [5], as:
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and thereafter, R(δ̂intm.Ω
1T
N ) is implemented as the follow-

ing dot product:

δ = R(δ̂intm.)R(Ω
1
N) − I(δ̂intm.)I(Ω

1
N).

In the shared codebase, we validate the above imple-
mentation of IDFT by testing against the IDFT function
numpy.fft.ifft2 provided by the popular Numpy library [14].



Clipping module Clipping of an image x to the [0,1]
range is implemented as,

C(x) = 1 − ⌊1 − ⌊x⌋⌋ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, x ≥ 1,

x, 0 < x < 1,

0, x ≤ 0,

where ⌊x⌋ is equivalent to and implemented using the
ReLU function, which is supported by most NN verifiers.

Segment Interpolator (SI) module This module takes in
two inputs i1 ∶= ∣F(x1)∣e∠F(x1) and i2 ∶= ∣F(x2)∣e∠F(x1)

where x1 is the image into which the style elements from
image x2 should be injected. However, this injection should
not overly modify the structural content of the interpolated
images from that of image x1. To ensure the latter, notice
that the phase of both the inputs to this module is the phase
of x1 image, i.e., e∠F(x1). An interpolation set between
these inputs is constructed using a linear layer with weight
as (i2−i1)T and bias as i1. The input to this layer is a scalar
α ∈ [0,1] and results in outputs of the form x′ = α(i2 −
i1) + i1. Therefore, increasing α increases the visual or
perceptible closeness of the interpolated images from image
i1 to image i2.

Domain Resolution Setting The purpose of this optional
setting is to construct pixel-space perturbations having
lower frequencies than the fundamental frequency of the in-
put image, while requiring few DFT coefficients. For this,
we increase the resolution of the Fourier domain, or equiva-
lently the scale of the pixel domain, by a factor r. The IDFT
matrix for this higher frequency-resolution resolution ΩrN

is as follows:
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where ΩrN
i,j = ΩrN[i×N ∶(i+1)×N, j×N ∶(j+1)×N]. Therefore,

from (6), the higher scale pixel-space perturbation should
be δrN = R(ΩrN δ̂rNΩT

rN), where δrN ∈ RrN×rN and
δ̂rN ∈CrN×rN . While one could construct the higher scale,
i.e., rN × rN -sized, perturbation set using (6), and use its
N × N cropped set as the final perturbation set, we addi-
tionally simplify the above relation. Given the fact that our
DFT space perturbations are zero-centered, and the purpose
of increasing frequency domain resolution is to efficiently
capture perturbations of frequencies less than ωf , we as-
sume that at most d < N frequency coefficients are per-
turbed. This implied that δ̂rN[i×N ∶(i+1)×N, j×N ∶(j+1)×N] =0
for i,j /∈{0, r − 1}, and
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Since, we only require δ0,0 ∈ RN×N , it can be obtained by:

δ = δ0,0 = Ω
rN
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Thus, when frequency domain resolution is increased to en-
code smooth perturbations of frequency less than ωf and d<
N coefficients are perturbed, the IDFT output is the usual
IDFT output term summed with three additional terms.
Each of these terms can be computed using the same im-
plementation as used for ΩrN

0,0 δ̂0,0Ω
TrN
0,0 ≡ Ω1

N δ̂Ω1T
N in (6).

B. Fourier Domain Specification Design
The typical norm-bounded local set in spatial domain

capturing additive perturbations can be written as:

Bp,ϵ(x) = {x
′
∣ ∣∣x′ − x∣∣p ≤ ϵ},

= {x + δ ∣ ∣∣δ∣∣p ≤ ϵ},

= x + {δ ∣ ∣∣δ∣∣p ≤ ϵ} = x + Bp,ϵ(0),

For additive perturbation model, we define the frequency
domain augmentation set as

Bp,ϵ̂(x) = {x + F̄
1
(δ̂) ∣ δ̂ ∈ Bp,ϵ̂(0)}.

We now provide the theorem proofs omitted from the
main paper.

Theorem 1 [B∞,ϵ̂,M̂→B∞,ϵ] The smallest pixel space ℓ∞-
ball B∞,ϵ(0) enclosing the output set of IDFT for input set
B∞,ϵ̂,M̂(0) has ϵ∞ = dϵ̂∞, where d is the maximum num-

ber of DFT coefficients allowed to perturb by mask M̂ , i.e.,
maxx̂∈B

∞,
ϵ∞
d

,M̂
(0) ∣∣F̄1(x̂)∣∣∞ = ϵ∞.

Proof of Theorem 1 Let us denote the i-th row of the
IDFT matrix Ω−1N by o−1,iN . Using the definition of ℓ∞ norm,
we can write:

max
x̂∈B

∞,
ϵ∞
d

,M̂
(0)

All the entries of Ω−1N have unit magnitude. Therefore, for
any i ∈ {0, . . . ,D − 1}, we can use the triangle inequality to
obtain:
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(7)



Hence:
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In order to get a lower bound on
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Equation (7) applies for i ∈ {1, . . . ,D − 1}, yielding
∣o−1,iN x̂′∣ ≤ ∑D−1

j=0 M̂[j] ϵ∞
d
= ϵ∞. Thus, ∣∣F̄1(x̂′)∣∣∞ = ϵ∞.

Therefore, we have
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concluding the proof.

Theorem 2 [B2,ϵ̂,M̂ → B2,ϵ] The output of IDFT for input
B2,ϵ̂,M̂(0) is the pixel space ℓ2-ball B2,ϵ(0) ∈RD with ϵ2 =√
Dϵ̂2, i.e., {F̄1(x) ∣ x∈B2, ϵ2

√

D
,M̂(0)} = B2,ϵ2(0).

Proof of Theorem 2 The result follows from the Parse-
val’s theorem on the equivalence of intensities in the pixel
and Fourier domain up to a constant factor, and for the DFT-
IDFT definition pair in equation (1) can be derived as fol-
lows. Let δ̂ ∈ B2,ϵ̂(0) and δ = F̄1(δ̂), then we have:
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Thus, for a pixel space ℓ2-norm perturbation epsilon ϵ, we
have:

B2,ϵ(0) = {δ ∣ ∣∣δ∣∣2 ≤ ϵ},

= {δ ∣ ∣∣δ̂∣∣2 ≤
1

√
WH

ϵ} , from (8)

= Bϵ̂,2(0) Ô⇒ ϵ̂2 =
1

√
WH

ϵ2.

Therefore, we have ϵ̂2 = 1√
WH

ϵ2, concluding the proof.

Sound translation of Fourier specifications from Po-
lar to Cartesian form. Given the limits on the ampli-
tude [∣δ̂∣l, ∣δ̂∣u] and phase [∠δ̂l,∠δ̂u] of a Fourier coef-
ficient δ̂, and the corresponding four Cartesian coordi-
nates {zll=̂∣δ̂∣l∠δ̂l, zlu=̂∣δ̂∣l∠δ̂u, zul=̂∣δ̂∣u∠δ̂l, zuu=̂∣δ̂∣u∠δ̂u},
one has:

R(δ̂)l =

⎧⎪⎪
⎨
⎪⎪⎩

−∣δ̂∣u, if π ∈ [∠δ̂l,∠δ̂u],
min{R(zll),R(zlu),R(zul),R(zuu)}

R(δ̂)u =

⎧⎪⎪
⎨
⎪⎪⎩

∣δ̂∣u, if 0 ∈ [∠δ̂l,∠δ̂u],
max{R(zll),R(zlu),R(zul),R(zuu)}

I(δ̂)l =

⎧⎪⎪
⎨
⎪⎪⎩

−∣δ̂∣u, if 3π
2
∈ [∠δ̂l,∠δ̂u],

min{I(zll),I(zlu),I(zul),I(zuu)}

I(δ̂)u =

⎧⎪⎪
⎨
⎪⎪⎩

∣δ̂∣u, if π
2
∈ [∠δ̂l,∠δ̂u],

max{I(zll),I(zlu),I(zul),I(zuu)}

The above Cartesian space bounds are sound, i.e., they en-
close all frequency coefficient values that can be reached by
the given amplitude and phase set. However, they are sub-
optimal as they allow all combinations of the real and imag-
inary components enclosed within, and therefore introduce
over-approximation in the otherwise precise encoding.

C. Experiment Details
Visual demonstrations and implementation for our en-

codings, unit tests, attacks, verification and certified train-
ing for the proposed specifications is available at https:
//github.com/hh10/Fourier-Verification-and-

Certified-Training.
Network details. The network used in this work is the

CNN7 convolutional network, owing to its typical use in
most existing verification and certified training works, start-
ing with [30]. For our 10 class datasets, this network has
5×{Conv(3x3) + Batch Normalization + ReLU} + Flatten
+ Linear(512) + ReLU + Linear(10) layers amounting to
62k ReLUs.

Platform details. The network trainings and verification
were run on an Nvidia GeForce RTX 3090 GPU with 25 GB
VRAM to allow a consistent comparison among the bound
computation and the training times reported in Figure 6.

Specification and Verification details. For verification
of single input specifications, we choose to report for ad-
ditive specifications as per 2 as most existing verification
works verify for additive noise. We picked the typically re-
ported pixel-domain ϵ∞ values of 1/255, 2/255 and 8/255
for our specifications. To define the Fourier domain speci-
fications of varying dimensionality in a consistent manner,
we computed the ϵ̂∞s corresponding to ϵ∞s as per Theo-
rem 1. After designing all elements of the input specifica-
tion Bp,ϵ̂,M̂ as discussed in §3.2, the verification of the aug-
mented network Nθ ○E(x) for this specification was done
using AutoLirpa.



Training details. The certified trainings were done for
the same specifications that the non-robustly trained net-
works were verified for. All trainings were specified us-
ing a configuration file that specifies parameters such as the
experiment seed, dataset transforms, training epochs, opti-
mizer parameters such as learning rate and weight decay,
perturbation growing schedule, etc. The default values of
these parameter for most trainings were: i) training epochs
were 150-175, ii) the optimizer settings were kept consistent
with that in [30], including the use of Adam optimizer with
learning rate of 5e − 4, iii) the perturbation epsilon growth
profile was S-shaped (ϵ(epoch) = ϵl+(ϵu−ϵl) eβ

eβ+(1−e)β , e =
epoch

#epochs , β = 1.5), starting from epoch 11 till 140. The re-
ported trained models, the configuration files used for their
training and evaluation, and the instructions to reproduce
the reported experiments are provided in the shared code-
base.

Certified Training. The certified trainings for our Fourier
domain specifications for networks evaluated in Fig 6c-
Fig 6d involved

min
θ

E(x,y)∈(X ,Y) [max
δ̂,α

L (Nθ ○E(x)(δ̂, α), y)] ,

where the inner worst case loss is computed using bounds
on the network output. The training epochs were 150 for
FB trainings and ≈ 500 for our Fourier domain IBP train-
ings. The IBP trainings were trained for more epochs to
grow the perturbation epsilon more gradually than the other
trainings that induce relatively less over-regularization. For
faster convergence of Fourier domain IBP trainings, we
use the specialized weight initialization and regularization
from [30]. The pixel domain certified network was trained
as suggested in [24] and using their codebase.

Adversarial Training and Attacks. The pixel-domain ad-
versarial training for the network evaluated in Fig 5b in-
volved

min
θ

E(x,y)∈(X ,Y) [L (Nθ(xadv), y)] ,

where xadv ∈ B∞,ϵ is the pixel-domain adversarial attack
such that Nθ(xadv) ≠ y. Similarly, the Fourier-domain ad-
versarial attack for the single input specifications is δ̂adv ∈
B∞,ϵ̂,M̂ and for the two input conditional specifications
is αadv ∈ [0,1] such that the network Nθ’s output for
the image generated by E(x) for δ̂advand αadv is incor-
rect, i.e., Nθ ○ E(x)(δ̂adv, αadv) ≠ y. We considered the
popular PGD-based attack, implemented as in the recent
work [48], for adversarial training and to evaluate the ad-
versarial accuracy of the networks. Projected Gradient De-
scent (PGD) [21]-based attacks, such as used in [2], take
steps in the direction of the sign of the gradient of the loss
w.r.t. to the specification variables ∇δ̂′L(Nθ ○ E(δ̂′), y)

while projecting onto the input specification B∞,ϵ̂,M̂ after
every iteration. The steps are taken for a fixed number of
iterations or until reaching a δ̂′ that results in network in-
correctness. The default parameters used to find this attack
in B∞,ϵ̂,M̂ were: number of iterations=20, step size (α)= ϵ

5
.

Our codebase also provide the implementation of the Low-
Frequency Backdoor Attack (LFBA) used in [25], though
we found it to be a weaker attack than PGD for our specifi-
cations, therefore we only report the PGD-based adversarial
accuracy in Fig. 6. With both the attacks, the verified ac-
curacy using both complete and incomplete verifiers lower
bounded the adversarial accuracy.

Augmented Training. Augmented trainings for our
Fourier domain specifications involved

min
θ

E(x,y)∈(X ,Y) [L (Nθ ○E(x)(δ̂′, α′), y)] ,

where δ̂′ ∈ Bp,ϵ̂,M̂ for the single input specifications and
α′ ∈ [0,1] for the two input conditional specifications. The
standard augmentation training to prepare the network eval-
uated in Fig 5a is trained with the common augmentations
provided by PyTorch transforms, i.e. random horizontal
flip (probability=0.5), color jitter (brightness=(0.9, 1.15),
contrast=(0.8, 1.2), saturation=(0.9, 1.1), hue=(-0.05, 0.05))
and random grayscale (probability=0.2).

D. Additional Experiments
D.1. Robustness verification of conditional specifi-

cations.

Along with verifying single input-specifications in §4.2,
we verify two inputs-based conditional specifications sim-
ilar to the ones shown in Fig. 4 (c). We train two CNN7
networks (A and B) on CODaN dataset; A is trained with
the original day images from the dataset, B is trained with
day images that are augmented in the frequency domain to
appear like night images as per [43]. Both networks are
then empirically tested and verified for object classifica-
tion in image sets that span from the Fourier amplitudes of
day images towards those of unseen night images. Results
for the same are reported in Figure 8 and show the veri-
fied accuracy lower bounding the adversarial accuracy for
both networks. While the verified accuracy for the network
trained with frequency domain augmentation is higher than
for the normally trained network as expected, the perturba-
tion magnitudes that could be verified as robust are small for
both. This can be explained given that a day to night scene
change incurs a large intensity change and these models are
not certifiably trained for conditional specifications.

Certifiable training for conditional specification offers
implementation challenge as the prepended encoding net-
work needs to be reconstructed for every input batch. This
reconstruction incurs significant time which is acceptable



for verification but not for training. Therefore, we leave
the certified training for conditional specifications for future
work.
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Figure 8. Verification outcomes for conditional domain change
specification Xdes,cond(α,X,X ′) in (5) for the 10-class CODaN
dataset, with X,X ′ being the day and night image datasets resp.

D.2. Extending to other Frequency domain trans-
forms

This work primarily focused on DFT as the frequency
transform to decompose data in terms of frequencies. How-
ever, the proposed framework can readily support any trans-
form that can be computed through matrix multiplications.
Therefore, next we discuss the straightforward extension of
the proposed approach for verifying specifications defined
in the coefficient space of another popular frequency trans-
form, i.e., the Discrete Cosine Transform (DCT).

DCT. Similar to DFT, the DCT of an input x ∈ RW×H

can be performed using the DCT matrix F ∈ RW×H as
x̂ ∈ RW×H ∶= FxFT , with its Inverse DCT being x=FT x̂F
if F is orthogonal. Thus, IDCT can be implemented using
linear layers with F matrix as its weights and no bias. There
exists different definitions of DCT transforms, matrices and
normalizations; we implement the most commonly used
Type-II IDCT with orthonormalization as our encoding net-
work E. We check the correctness of E’s implementation
of IDCT for 2d-signals against the scipy.fft.idctn function
provided by the popular SciPy library [33]. Similar to the
DFT-based approach, the E is prepended to the network Nθ

to be verified and allows bound propagation through it by
the SoA verifiers for verification of the network against per-
turbations in the DCT space. The input to the augmented
network Nθ ○ E is a nonuniform interval set in the DCT
coefficient space. As with DFT, the DCT coefficients also
hold spatial correspondence to certain types of frequencies.
This is exploited for attack design in existing works [2, 37]
and can similarly be used for deciding M̂ in the specifica-
tion design. As for the magnitude ϵ̂ of ℓ∞ perturbation of
the DCT coefficients, it can be computed according to the
theorems presented below. The implementation for defin-
ing DCT-based specifications, their verification and certi-
fied training is provided in the shared codebase. We repeat
the verification experiment done in §4.2 for the DCT-based
specifications to observe the verified and adversarial accu-

racies reported in Fig.9. Notice again from Fig.9 that a)
the network CNN7 could be verified as non-trivially robust
for specifications allowing only the low frequency perturba-
tions, irrespective of the training approach used to train it,
b) the verified accuracy for all networks lower bounds their
adversarial accuracy. The outcome a) can be particularly
useful as pixel domain-based hurts standard accuracy of the
network in return of robustness to all norm-bounded pertur-
bations across the spectrum; therefore, when the latter is not
a necessary requirement for a deployment, one can use the
proposed approach to certify or train the network for robust-
ness to the specific perturbation spectrum that is expected in
that deployment, while incurring less decrease in network’s
standard accuracy.

Theorem 3 [B2,ϵ̂,M̂ → B2,ϵ] The output set of IDCT for
input set B2,ϵ̂,M̂(0) is the pixel space ℓ2 ball B2,ϵ(0) ∈RD

with ϵ2= ϵ̂2, i.e., {F̄1(x) ∣ x∈B2,ϵ2,M̂(0)} = B2,ϵ2(0).
The result follows from the orthonormality of F :

max
x̂∈B2,ϵ2,M̂ (0)

∣∣F̄1(x̂)∣∣2 = max
x̂∈B2,ϵ2,M̂ (0)

√
(FT x̂)T (FT x̂)

= max
x̂∈B2,ϵ2,M̂ (0)

√
x̂TFFT x̂

= max
x̂∈B2,ϵ2,M̂ (0)

√
x̂T x̂ = ϵ̂2

Theorem 4 [B∞,ϵ̂,M̂ → B∞,ϵ] The smallest pixel space ℓ∞
ball B∞,ϵ(0) enclosing the output set of IDCT for input set
B∞,ϵ̂,M̂(0) has ϵ∞=Kϵ̂∞, where K is the maximal ℓ1 norm
amongst the masked rows of D,

max
x̂∈B

∞,
ϵ∞
K

,M̂
(0)
∣∣FT x̂∣∣∞ = ϵ∞.

Let us denote by f i the i-th row of the IDCT matrix FT ,
and by f̃ i its masked version f̃ i = M̂T ⊙ f i. Proceeding
similarly to the proof of theorem 1, we can write:

max
x̂∈B

∞,
ϵ∞
K

,M̂
(0)
∣∣FT x̂∣∣∞ = max

x̂∈B
∞,

ϵ∞
K

,M̂
(0)

max
i∈{0,...,D−1}

∣f ix̂∣

= max
i∈{0,...,D−1}

max
x̂∈B

∞,
ϵ∞
K

,M̂
(0)
∣f ix̂∣

= max
i∈{0,...,D−1}

max
x̂∈B

∞,
ϵ∞
K
(0)
∣f i (M̂ ⊙ x̂)∣

= max
i∈{0,...,D−1}

max
x̂∈B

∞,
ϵ∞
K
(0)
∣f̃ ix̂∣

≤ max
i∈{0,...,D−1}

max
x̂∈B

∞,
ϵ∞
K
(0)

D−1
∑
j=0
∣f̃ i[j]∣∣x̂[j]∣

= ϵ∞
K

max
i∈{0,...,D−1}

∣∣f̃ i∣∣1 = ϵ∞.

Let us denote by sign(a) the sign function, and define
z ∈i∈{0,...,D−1} ∣∣f̃ i∣∣1. Differently from the DFT case, the
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Evals legend for figures 9a-9c:
Acc. vs. DCT-PGD adversary up to ϵ∞=8/255

Pixel-domain ver. acc. up to ϵ∞=8/255

Fourier-domain verified accs. for different ϵ̂∞
corresp. to ϵ∞:

Ver. epsilon ϵ̂∞=̂ϵ∞=8/255

(c) Pixel domain IBP [24]-based training
for ϵ∞=8/255

Figure 9. The figure reports accuracies of differently trained CNN7 networks (7 layers, 62k ReLUs) for additive specification (2). The
verified specifications enclose perturbations such that the x-axis specified number of frequency coefficients including and around the central
coefficient are allowed to independently vary up to epsilon ϵ̂∞. The ϵ̂∞ is set corresponding to commonly used pixel-domain ϵ∞ value of
8/255 approximately as per Theorem 4. Pixel domain verification is done for ϵ∞=8/255. The caption of each figure denotes the approach
used to train the network, with d denoting the number of DCT coefficients perturbed during training.

entries of x̂ are real-valued. In order to obtain a tight lower
bound, we can define x̂′ ∈ B∞, ϵ∞K

(0) as a vector whose j-th
entry is set as follows: x̂′[j] = ϵ∞

K
sign(f̃z[j]), resulting in:

max
x̂∈B

∞,
ϵ∞
K

,M̂
(0)
∣∣FT x̂∣∣∞ = max

i∈{0,...,D−1}
max

x̂∈B
∞,

ϵ∞
K
(0)
∣f̃ ix̂∣

≥ max
i∈{0,...,D−1}

RRRRRRRRRRR

D−1
∑
j=0

f̃ i[j]x̂′[j]
RRRRRRRRRRR

= max
i∈{0,...,D−1}

ϵ∞
K

RRRRRRRRRRR

D−1
∑
j=0

f̃ i[j]sign(f̃z[j])
RRRRRRRRRRR

For i = z:

RRRRRRRRRRR

D−1
∑
j=0

f̃ i[j]sign(f̃z[j])
RRRRRRRRRRR
=
RRRRRRRRRRR

D−1
∑
j=0
∣f̃z[j]∣

RRRRRRRRRRR
=

D−1
∑
j=0
∣f̃z[j]∣

= ∣∣f̃z ∣∣1 ∶= max
i∈{0,...,D−1}

∣∣f̃ i∣∣1

For i ∈ {0, . . . ,D − 1} ∖ {z}:

RRRRRRRRRRR

D−1
∑
j=0

f̃ i[j]sign(f̃z[j])
RRRRRRRRRRR
≤

D−1
∑
j=0
∣f̃ i[j]∣∣sign(f̃z[j])∣

=
D−1
∑
j=0
∣f̃ i[j]∣ = ∣∣f̃ i∣∣1

≤ max
i∈{0,...,D−1}

∣∣f̃ i∣∣1

Hence,

max
x̂∈B

∞,
ϵ∞
K

,M̂
(0)
∣∣FT x̂∣∣∞ ≥ max

i∈{0,...,D−1}

ϵ∞
K

RRRRRRRRRRR

D−1
∑
j=0

f̃ i[j]sign(f̃z[j])
RRRRRRRRRRR

= ϵ∞
K

max
i∈{0,...,D−1}

∣∣f̃ i∣∣1

= ϵ∞,

concluding the proof. For the orthonormal Type-II IDCT:

K = max
i∈{0,...,D−1}

⎡⎢⎢⎢⎢⎣
∣M̂[0]√

D
∣ +
√

2

D

n−1
∑
j=1
∣M̂[j] cos(jπ

D
(i + 1

2
))∣
⎤⎥⎥⎥⎥⎦
.


