
A. Impact of Fundamental Models on Earth
Observation

Over the past few decades, remote sensing and Earth
observation have had a transformative effect on a wide
range of applications, including military, insurance, market
prediction, and climate science, among others. Although
this substantial impact cannot be directly ascribed to deep
learning or large pre-trained networks, it forms part of a
broader discussion that goes beyond the scope of this section.
The focus here is on examining the role of fundamental
models in enhancing Earth observation.

A.1. Contributions to Climate Mitigation and
Adaptation

The use of machine learning on remote sensing data
has become prevalent in devising solutions for an array of
problems related to climate change [4, 9, 12, 16]. These
solutions are primarily designed by curating datasets for
specific tasks, which necessitates considerable resources.
In addition, these solutions are usually tailored to particular
regions as extending the methods to new geographies
continues to be a significant challenge, largely due to the
scarcity of labelled data [16]. Regions with less economic
development, while equally vulnerable to the effects of
climate change, often suffer from a deficit of effective remote
sensing-based solutions [4]. Fundamental models for Earth
observation can potentially tackle many of these concerns,
thereby significantly hastening and facilitating the creation
of novel remote sensing solutions for climate change.

A.2. Promoting Accessibility
By diminishing the requirement to curate a large labelled

dataset for each individual task, we could democratize the
development of machine learning models for remote sensing,
particularly for groups or entities operating on limited
budgets [1, 10]. Fundamental models could be particularly
beneficial for non-profit organizations, academic institutions,
startups, and developing countries. They could also pave the
way for applications that were previously not profitable. We
posit that the wider availability of these models will primarily
have a net positive impact, although we recognize that this
access could lead to unforeseen applications with potentially
negative effects [3]. Moreover, it’s important to note that these
models may have dual-use implications, where they could,
for instance, aid oil and gas industries in their operations in
a way that either increases or decreases overall emissions.

A.3. Emissions from Large Pre-trained Models
Recent studies have examined the emissions of large

neural networks [8, 11, 13–15]. Notably, training a large
transformer can result in the emission of 284

when run on computers primarily powered by fossil fuel
energy (US national average) [15]. When juxtaposed with in-
dividual actions, such emissions are substantial - a round-trip
passenger flight from San Francisco to London results in 2.8

, which is roughly 100 times smaller. Yet, the wide applica-
bility of pre-trained models and their potential in aiding efforts
to mitigate climate change [12] prompts a shift in perspective.

Assessing new tools and systems necessitates a considera-
tion of the probable net impact on emissions, both in terms of
the tool’s creation and its eventual deployment. For instance,
testing the performance of airborne methane sensing tools
at emission levels typically found in oil and gas operations
can lead to the emission of about 7 metric tonnes of methane,
roughly equivalent to 600

over a 20-year global warming potential [5]. Nevertheless,
in a single day of operation, such an instrument can survey
hundreds of sites, often identifying leaks that require repair
and which emit considerably more than 7 metric tonnes of
methane per day [7]. Similarly, fundamental models could
significantly advance our capacity to utilize large amounts
of passively collected satellite data, leading to massive
reductions in emissions, enhancing our understanding of
climate science qualitatively, and bolstering our ability to
adapt to climate change.

In summary, the potential advantages for climate change
mitigation through improved Earth observation method-
ologies likely outweigh the emissions associated with
fundamental models. Furthermore, several actions can be
undertaken to reduce and mitigate emissions linked to the
training of your model [8]:
• Choose data centers that are certified as carbon neutral

or predominantly powered by renewable energy, with
efficient power usage (PUE). Such steps can drastically
reduce emissions by about 50 times [8].

• Configure your code development process to minimize the
need for computationally-intensive runs, for example, by
using modular development and testing when possible.

• Improve the efficiency of your code and sparsify your
network where feasible [11]. This could reduce emissions
by up to tenfold.

• Opt for more energy-efficient hardware, such as TPUs or
GPUs.

• Monitor [13] and report your emissions [8]. Better
communication about climate change is vital for systemic
changes. Improved documentation will assist other
developers to continue from where you left off, possibly
avoiding some computationally intensive runs.

• Offset the cumulative emissions of your projects.

A.4. Fairness and Biases
It’s well known that large language models can amplify and

perpetuate biases [2]. While this can lead to serious societal
problems, we believe that biases in remote sensing models
are likely to have a considerably lesser impact. However, we
do foresee potential biases and fairness issues.

Data Coverage and Resolution Certain satellites provide
standard spatial resolution and revisit rate coverage for the
entire Earth (e.g., Sentinel-2 offers global coverage at a



resolution of 10-60 m/pixel every five days). This ensures
that imagery is freely and uniformly available across the
planet. Other satellite data providers, such as Maxar, provide
images on demand and have a higher spatial resolution (up to
0.3m per pixel), but have lower revisit rates and higher costs.
Some countries, such as New Zealand, freely offer aerial
imagery with a resolution of up to 0.1m per pixel1. Finally,
it’s worth mentioning that cloudy seasons in certain climates
may limit data availability for some countries. Overall, while
coverage is relatively uniform, some regions have much
higher coverage than others, and financial constraints can
limit access to data. This can lead to some degree of biases
and fairness issues.

B. Hyper-parameters
The training and fine-tuning in our experiments follows

the original MAE [6] training paradigm.
All models were pre-trained using the same hyper-

parameters:
• Effective batch size: 2048 (32 per GPU × 64 GPUs)
• Base learning rate (blr): 1.32×10−4

• Gradient clipping norm: 1
• Number of epochs: 100
• Warmup epochs: 10
• Weight decay: 0.0457

For fine-tuning, we use an effective batch size of 32 with a
weight decay of 0.05 and 5 warmup epochs.

The specific base learning rates (blr) used for each task
were found through random search, see 1.

Table 1. Base Learning Rates (blr) for Fine-tuning Tasks Using
Different Models

Task Sentinel Satellogic Sentinel + Satellogic
m-bigearthnet 9.76×10−4 3.12×10−4 7.17×10−4

m-so2sat 6.53×10−4 2.12×10−4 4.57×10−4

m-brick-kiln 1.86×10−4 1.69×10−5 1.81×10−4

m-forestnet 5.09×10−4 5.64×10−4 1.81×10−4

m-eurosat 7.57×10−4 4.60×10−4 1.65×10−4

m-pv4ger 5.56×10−4 2.72×10−4 4.05×10−4

Table 2. Comparison of reconstruction losses under different
training datasets and masking schemes. Satellogic data is generally
harder to reconstruct due to its higher resolution. Random masking
tends to be easier for the model to reconstruct, as it can leverage
different bands and timesteps to recover missing information.

Training Data Masking Schema Reconstruction Loss
Satellogic tunnel 0.561
Satellogic random 0.458
Sentinel tunnel 0.285
Sentinel random 0.284
Sentinel + Satellogic tunnel 0.284

1https://data.linz.govt.nz/
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