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Abstract

Non-invasive, efficient, physical token-less, accurate and
stable identification methods for newborns may prevent
baby swapping at birth, limit baby abductions and improve
post-natal health monitoring across geographies, within the
context of both the formal (i.e., hospitals) and informal (i.e.,
humanitarian and fragile settings) health sectors. This pa-
per explores the feasibility of application iris recognition to
build biometric identifiers for 4-6 week old infants. We (a)
collected near infrared (NIR) iris images from 17 infants
using a specially-designed NIR iris sensor; (b) evaluated
six iris recognition methods to assess readiness of the state-
of-the-art iris recognition to be applied to newborns and in-
fants; (c) proposed a new segmentation model that correctly
detects iris texture within infants iris images, and coupled it
with several iris texture encoding approaches to offer, to the
first of our knowledge, a fully-operational infant iris recog-
nition system; and, (d) trained a StyleGAN-based model to
synthesize iris images mimicking samples acquired from in-
fants to deliver to the research community privacy-safe in-
fant iris images. The proposed system, incorporating the
specially-designed iris sensor and segmenter, and applied
to the collected infant iris samples, achieved Equal Error
Rate (EER) of 3% and Area Under ROC Curve (AUC) of
99%, compared to EER≥20% and AUC≤88% obtained for
state of the art adult iris recognition systems. This suggests
that it may be feasible to design methods that succesfully
extract biometric features from infant irises.

1. Introduction

1.1. Background and Motivation

The patient safety of newborns via consistent, reliable,
safe, effective, and easy-to-implement non-invasive identi-
fication has long been of global interest in order to reduce
medical errors and to prevent baby swapping or crimes such
as abduction. These risks exist across both high- and low-
resource geographies, particularly in hospitals without the

ability to deploy sophisticated patient identification secu-
rity protocols. This includes settings where the potential for
newborn misidentification is high, namely (a) due to sim-
ilar birth dates, medical record numbers, or common sur-
names, (b) in the case of multiple gestation births (twins and
triplets), or (c) within the Newborn Unit (NBU) or Neonatal
Intensive Care Unit (NICU) [1]. Hospitals that lack effec-
tive identity management systems are more prone to delete-
rious patient safety and medical error incidents, which can
have severe consequences, including emotional distress for
families, legal battles to establish biological parentage, and
significant damage to a hospital’s reputation and finances.

As an example, each year approx. 20,000 babies are
switched due to various forms of newborn misidentification
[2]. A study conducted at Boston’s Beth Israel Deaconess
Medical Center found that around 26% of neonates in the
NICU were at risk of misidentification due to similar iden-
tifiers [3]. In a study involving health professionals from
54 hospitals in the Vermont Oxford Network, it was found
that 11% of newborns over two years were misidentified [4].
A study by the National Center for Missing and Exploited
Children (NCMEC) reveals alarming statistics on infant ab-
ductions [5]: from 1997 to 2016, 66% of abducted infants
were taken from hospitals, with the majority being less than
six months old. Among those abductions, 58.6% happened
in the mother’s room, 13.6% in the nursery, 12.1% in pedi-
atrics, and 15.7% elsewhere on the premises.

Although Gaille [6] notes that many of these issues are
resolved before families leave the hospital, the risk of baby
switching could have been lowered by application of non-
invasive, fast and affordable biometric identification means.
Additionally, if such a method would offer reliable identifi-
cation throughout the life, without the need of re-enrolling
the subject, this could also support prevention of new-
born abductions and help in searching for missing children,
as well as, potentially, facilitate linkage of health records
across the life course [7]. Another area of growing con-
cern for improved methods of reliable newborn identifi-
cation is within fragile and humanitarian settings, such as
refugee camps. Implementing methods by which to im-
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prove the stable identification of infants within these dy-
namic settings may not only improve safety for vulnerable
populations as they navigate often chaotic and unfamiliar
systems, with an elevated risk of family separation, but also
may lead to more effective monitoring and evaluation of
infant health, and linkage with routine health information
systems at the patient and population levels [8]. Iris recog-
nition is considered to be accurate and relatively stable over
time [9], keeping its identification capabilities even shortly
after death [10, 11]. (Although a hypothesis about the iris
pattern long-term stability has still to be confirmed [12, 13]
and has not yet been documented for cases when the enroll-
ment is done during infancy.) Iris recognition sensors and
algorithms designed for adults were shown to be effective
for children aged two and older, but they are not applicable
for infants under two years old [14].

1.2. Novel Contributions

This paper explores the feasibility of iris recognition ap-
plied to infants of age between 4 and 6 weeks, and – to our
knowledge for the first time – proposes the iris recognition
method designed specifically for infants. The key contri-
butions of this work are:

(c1) collection of the unique dataset consisting of 1,920
iris images acquired from 17 newborns at the neona-
tology clinic with a custom-designed (specifically for
this study) iris sensor producing ISO/IEC 19794-6-
compliant [15] iris images;

(c2) an iris segmentation model capable of segmenting cor-
rectly iris images acquired from newborns (in addi-
tion to being capable of segmenting other types of iris
samples, such as those with eye diseases or forensic
samples acquired after death); this segmenter was in-
tegrated with an iris encoding routines and custom-
designed iris sensor to create a fully-operational, first
infant iris recognition system;

(c3) newborn iris recognition experiments using six state-
of-the-art iris recognition methods, each implement-
ing a different approach to iris recognition, includ-
ing classical Gabor wavelets-based, human saliency-
based, deep learning-based, and commercial methods;

(c4) to protect children privacy, and to meet data collec-
tion restrictions, instead of publishing collected new-
born iris images (c1), with this paper we offer a dataset
of 1,000 synthetic newborn iris samples generated by
a StyleGAN-based, identity leakage-free generative
model trained on authentic newborn iris images (c1).

1.3. Prenatal and Early Postnatal Iris Development

Embryonic development of the iris begins at the 12th
week of pregnancy [16–18]. The unique surface patterns

of the iris result from the individual arrangement of Fuchs’
crypts and contraction furrows, which are stromal defects
caused by embryonic regression of the mesoderm during
eye anterior chamber formation. Development of crypts on
the iris surface starts around the 20th week of pregnancy and
probably ends in the postnatal period. As the diameter of
the cornea increases, the diameter of the iris and the width
of the pupil increase too. Other postnatal changes to the eye
involve the anatomical elements around the iris. Among
other things, the thickness of the cornea decreases, the axial
length of the eyeball increases, and the depth of the anterior
chamber adjacent to the iris increases. A frequently visible
postnatal change in the iris is a change in iris color. This
change will occur within the first 6–12 months of life due
to the accumulation of pigment in iris stromal melanocytes.
Eye color is a polygenic trait influenced by as many as 16
genes, with HERC2 and OCA2 on chromosome 15 playing
the most significant roles. Uneven pigment distribution can
cause iris heterochromia, which does not impact automatic
iris recognition due to near infrared iris scanning. One im-
portant difference between adult and infant iris scans, not
related to anatomy, though, is usually a larger dilation of the
pupil in case of newborns. This happens when such scans
are taken as part of the routine screening for retinopathy,
which requires administering mydriatic agents.

1.4. Small Data Statement

Qualification as small data research: This paper fo-
cuses solely on infants of age between 4 and 6 weeks, and
proposes the first iris recognition method designed specifi-
cally for infants with a very limited data. Methods to tackle
the data size and privacy challenges: (a) we have applied
ophthalmology-driven infant iris image augmentations sim-
ulating excessive near infrared light reflections from the
retina applied to adult iris images to make the infant-specific
segmentation model’s training effective; and (b) we trained
a generative model to synthesize newborn iris images with-
out leaking identity of infants, what allows to increase the
training data sample without compromising privacy of kids.

2. Related Works
Infant recognition has garnered increasing attention in

recent years for various applications. Several studies have
explored different biometric modalities for this purpose.
Bharadwaj et al. [19] proposed an autoencoder-based ap-
proach for newborn face recognition, achieving a rank-1
identification accuracy of 78.5% and a verification accuracy
of 63.4% at a 0.1% false accept rate . Liu [20] investigated
infant recognition through footprint analysis, introducing a
minutia descriptor based on deep convolutional neural net-
works, utilizing a dataset of 60 subjects aged 1 to 9 months.
Other studies have employed multimodal biometric traits,
such as face, fingerprint, and ear recognition, to identify
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newborns [21, 22]. However, a significant challenge with
these traits is that they are often not permanent and change
rapidly in the first months of life. In contrast, iris patterns
are hypothesized to be fully formed by the eighth month of
the gestation [23], making iris an appealing biometric trait
for infants compared to other modalities.

Several studies have investigated iris recognition for
young children, revealing both challenges and advance-
ments. Johnson et al. [24] examined iris recognition in chil-
dren aged 4 to 12 years over multiple visits using the Veri-
Eye matcher [25]. They found a slight, statistically insignif-
icant decrease in match scores over 12 months, suggesting
stability in iris characteristics from age of 4 years onwards.

Hutchison [26] conducted a longitudinal study on iris
recognition in infants aged 0 to 2 years. This study com-
pared iris image quality metrics between infants and adults,
assessing performance across age groups: 0-6 months, 7-12
months, 13-24 months, and adults. The analysis revealed
that while image quality varied, infants aged 13-24 months
had iris images more similar (in quality terms) to adults.
However, infants aged 0-6 months showed poorer perfor-
mance at a false match rate of 0.01% compared to older
infants and adults.

Nelufule et al. [27] explored image quality assessment
methods for iris biometrics in minors. They applied var-
ious quality assessment techniques (light variation, pupil
dilation, off-angle capture assessment, and pixel count) to
children’s iris images and compared them with adult im-
ages from the CASIA iris database. Their findings indicated
that, after removing images with no visible iris area, the iris
image quality metric distributions for children’s iris images
were comparable to those of adults. Building on this, Nelu-
fule et al. [28] developed an iris detection method for infants
using circular Hough transform.

Das et al. (2021) [29] conducted a longitudinal study
of iris recognition among 209 children aged 4 to 11 years
over three years. They found a statistically significant aging
effect, but it was minor compared to other variability fac-
tors. Iris recognition remained effective for up to three years
between samples, despite challenges with enrolling very
young children. This study contributed a unique dataset of
longitudinal iris images for this age group.

Moolla et al. (2021) [21] examined biometric recogni-
tion systems for infants, focusing on fingerprint, iris, and
outer ear shape biometrics. Their research highlighted
that preprocessing adjustments improved the localization
and segmentation of infant irises, with successful matching
starting from as early as six weeks and improving with age.

Recent work by Nelufule et al. (2023) [14] focused on
using infant iris biometrics to identify newborns and young
children. They collected iris images using an IriShield-USB
BK 2121U camera and evaluated image quality before seg-
mentation. The results demonstrated effective recognition

for children aged two and older, but less effective for those
under two years old.

This paper differs from, and extends previous stud-
ies by several novel components. First, it’s focused solely
on infants. Secondly, it uses a specially-designed for this
work newborn iris sensor instead of commercial-off-the-
shelf scanner designed for adults, what increases signifi-
cantly chances of acquiring good-quality NIR iris images
in the NICU environment. Thirdly, it proposes a deep
learning-based iris segmenter that not only detects the iris
in infant iris images, but performs the full iris segmentation
in both newborn and adult samples, including forensic post-
mortem iris images. Fourthly, this study includes designing
a StyleGAN-based generative model and offers 1,000 syn-
thetic (thus, addressing the newborn’s privacy) iris images
mimicking authentic iris pictures taken from infants.

3. Infant Iris Data Collection
3.1. Data Acquisition Protocol

The study and imaging of the children’s eyes were
approved by the Bioethical Committee of the Medical
University of Warsaw, Poland (approval doc. number
KB/108/2023). Iris photographs were taken at the neona-
tology clinic at the above university. The photos were
taken after obtaining informed consent from the children’s
guardians. To avoid additional stress factors, only chil-
dren who were previously scheduled for fundus examina-
tion were included in the study. Iris images were taken
after pharmacological mydriasis, after local drop anesthe-
sia and after placement of a palpebral fissure dilator. All
these activities are elements of standard clinical procedures
when examining the fundus of the eye with a Fison indirect
ophthalmoscope in the first weeks of life. Thus, capturing
the iris images did not require any additional medications
or preparations beyond the standard clinical procedure, and
extended the examination time by approximately 10 sec-
onds. The iris photographs were anonymized, labeled with
a sequential number, designation of the left or right eye, the
child’s age, and a date of the procedure.

3.2. Data Acquisition Scanner

Sensor’s characteristics The data collection was carried
out with a prototype device, custom-designed, built and pro-
vided by an industrial partner for this study. It is capable of
very high quality, high resolution imaging of the human iris
close-up, revealing its texture in great detail. The device
utilizes a single, 4 megapixel CMOS sensor sensitive in the
NIR spectrum of 700 nm and above, as well as NIR illu-
minators with a peak at 810 nm. This setup is able to pro-
vide iris images that surpass current commercial iris sensors
offering images with iris representation spanning approx-
imately 900 pixels across the iris diameter, i.e. five times
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more than recommended by ISO/IEC 19794-6 to classify
an iris image as the highest-quality biometric sample.

Sensor’s safety measures The NIR illuminators applied
in this device, OSRAM SFH 4787S, fall into the class
exempt group according to the eye safety standard IEC
62471:2006. Due to very vulnerable group of subjects
(infants), the authors additionally secured an independent
(of the manufacturer) testing of the assembled device for
eye safety at a professional testing lab at the Central Insti-
tute for Labour Protection – Research Institute, 16 Czerni-
akowska Str., Warsaw, Poland. The obtained measurements
and PELs (Permissible Exposure Limits) are shown in Tab.
1 and allow to conclude that the device is safe for children.

Table 1. Permissible and measured eye safety factors for the infant
iris sensor custom-designed for this study.

Permissible Measured
Exposure

Limit (PEL)

Skin hazard [J/m2] 35,566 215
Cornea and lens hazard [W/m2] 3,201 22
Retina hazard [W/(m2sr)] 1,404,494 762

Frontal view:
touchscreen

Rear view: lens and two 
NIR illuminators

Figure 1. Frontal and rear views of the handheld newborn iris
scanner custom-designed for this study by an industrial partner.

3.3. Data Curation

The initial dataset comprises 4,202 samples acquired
from 17 infants aged from 4 to 6 weeks. All samples from a
given subject were gathered in a single session in a form of
several 10-second sequences. Taking sequences instead of
single shots was intentional to maximize collecting at least
one good-quality sample per attempt. Due to this proce-
dure, many of the collected images were blurred and had to
be discarded. To perform this data curation, we calculated
the ISO/IEC 29794-6 SHARPNESS score for each image,
which ranges from 0 (low sharpness) to 100 (perfect sharp-
ness). Samples with a SHARPNESS score below 10 were
omitted, and the final data set used in this study consists of
1,920 total samples from 17 babies.

3.4. Synthesis of Infant Iris Images

Due to privacy-related restrictions associated with this
study, and to maximally protect vulnerable population of
subjects (infants), the original iris images cannot be used
for illustrations in this paper, and cannot be disseminated
in any form. However, to our best knowledge there are no
publicly-available datasets of infant iris images what sig-
nificantly hampers progress in this research field, primarily
due to the challenges associated with data collection, which
can only occur in healthcare premises and must be con-
ducted by a medical personnel. To overcome these obsta-
cles, and – more specifically – offer illustrations of newborn
images and share images mimicking properties of infant iris
samples, but at the same time do not reveal identity of chil-
dren, we trained a StyleGAN2-ADA-based model [30] with
the curated data (as described in Sec. 3.3) to synthesize a
set of privacy-safe infant iris images.

One of the main challenges in training such a model was
the limited amount of data available per subject, which com-
plicates the selection of an appropriate generative model.
Traditional models based on Generative Adversarial Net-
works (GANs) usually require large datasets, but in the case
of this study, we have only a few hundred images per sub-
ject, leading to potential overfitting of the discriminator.
Thus, we chose the StyleGAN2-ADA architecture, which
is optimized for training with limited data through vari-
ous augmentation techniques to enhance the number and
diversity of samples. The StyleGAN2-ADA was trained
from scratch using a batch size of 128, with the original
iris images rescaled to 256 × 256 pixels, and scaled up to
640 × 480 after synthesis to match the ISO/IEC 19794-6
recommended resolution.

As the next step, we utilized the trained model to gen-
erate 5,000 synthetic infant iris samples, which then were
matched using the HDBIF matcher (see Sec. 4) with all
training samples. This matcher calculates the fractional
Hamming distance between two binary iris codes. Synthetic
samples with a matching score below 0.5 were removed to
minimize a potential of a false match between synthesized
and authentic samples, and thus to prevent identity leakage.
The final synthetic dataset consists of 1,000 samples repre-
senting 500 synthetic infant “identities,” with two samples
per identity. This set of synthetic samples is made publicly
available with this work. It is also used to provide illustra-
tions in this paper (Figs. 2 and 3).

4. State-of-the-art Iris Matchers

To first assess the feasibility of infant iris recognition
with the existing approaches to iris matching, we have
employed six state-of-the-art adult iris recognition meth-
ods. Five methods are open-source academic solutions, and
one is a commercially available product. All methods are
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Figure 2. Examples of synthetically-generated infant iris images.
The trained generative model offers a remarkable realism of the
synthetic images and correctly captured intricate details, such as
the iris texture, brighter pupil (compared to adult iris images, in
which the pupil is usually darker than iris), eyelid retractors used
by medical personnel, specular highlights or skin texture.

shortly described in the following paragraphs.

Human-Driven Binary Image Feature extractor
(HDBIF) is an open-source method that specifically ad-
dresses post-mortem iris recognition [31]. It combines deep
learning-based post-mortem iris-aware segmentation [32]
with domain-specific feature extraction. The comparison
score is the fractional Hamming distance between iris codes
(as in Daugman’s solution [23] but with human-driven
kernels) representing non-occluded iris portions.

The University of Salzburg Iris Toolkit (USIT) v3.0 is
an open-source software for iris recognition [33]. The com-
bination of algorithms selected from the USIT toolkit for
this work follows the recommendation from the USIT au-
thors, and includes Contrast-Adjusted Hough Transform
(CAHT) for iris localization and segmentation [34], the 1D
Log-Gabor (LG) filter for feature extraction [35], and the
TripleA algorithm for calculating matching scores.

Open Source for IRIS (OSIRIS) v4.1 is an open-source
solution developed under the BioSecure EU project [36],
and directly follows Daugman’s methodology [23]. The
phase quantization of the Gabor filter outcomes is utilized to
calculate the iris code, and a comparison score between iris
codes is calculated using the fractional Hamming distance.

Neurotechnology VeriEye is a commercial iris recogni-
tion Software Development Kit [25] that implements a pro-
prietary algorithm not yet published (to our knowledge).
VeriEye is often ranked as one of the top methods in the
NIST IREX program [37]. For this matcher, a higher sim-
ilarity score indicates a better match between two iris sam-
ples. As recommended by the VeriEye suppliers, scores
above 40 indicate a match (genuine pair), while scores at
or below 40 indicate no match (impostor pair).

Dynamic Graph Representation (DGR) [38] utilizes a
hybrid framework that combines convolutional neural net-

works with graph models to create dynamic graph repre-
sentations. This method forms feature graphs with nodes
representing feature vectors and edges indicating node rela-
tionships. The resulting graph is processed by SE-GAT, a
structure based on Graph Attention Networks (GAT) [39],
to further refine the features. Notably, the DGR model does
not rely on segmentation and has demonstrated superior per-
formance in recognizing occluded biometric data, particu-
larly in iris and face samples.

The WorldCoin Iris Recognition Inference System
(WIRIS) [40] is an open-source iris recognition algo-
rithm, which – similarly to OSIRIS – implements Daug-
man’s iris recognition pipeline [9], and consists of four typ-
ical for Daugman’s algorithm steps: iris image segmenta-
tion, normalization, 2D Gabor wavelets-based feature ex-
traction, and Hamming distance-based matching. The seg-
mentation step uses an encoder and two decoders: one for
estimating eye geometrical parameters and second for de-
tecting occlusions such as eyelashes and hair [41].

5. Infant Iris Segmentation and Recognition
5.1. Segmentation Dataset and Infant Iris-Specific

Training Data Augmentations

As shown in the top row in Fig. 3, off-the-shelf iris seg-
mentation methods designed for adult eyes are not effective
in processing infant iris images. Hypothetically the main
challenge for these methods is much brighter pupil area,
compared to regular adult iris samples, caused by a reflec-
tion of near infrared from retina due to wide opening of iris
and illuminators placed closed to the camera optical axis
(to minimize the device size). These observations call for
designing an infant iris-specific segmentation model.

There are no, to the best of our knowledge, publicly-
available datasets of newborn iris images associated with
segmentation masks. Thus, we utilized a set of adult
iris images with segmentation masks composed of several
publicly-available benchmarks (described briefly at the end
of this subsection), and applied infant iris-specific aug-
mentations to all images to mimic anticipated properties
of newborn iris samples. More specifically, for all training
adult iris images we adjusted the brightness of the iris pupil.
To do that, we calculated the minimum and maximum pixel
values of the pupil, ranging from 109 to 190, using the circle
detection model [42] for pupil localization. Then, randomly
assigned pixel intensities within this range, and replaced the
original iris pupil pixel intensities. Additionally, we ap-
plied random rotations between -15 to 15 degrees and Z-
normalized the pixel intensity values (to standardize the dis-
tribution of pixel intensity to zero mean and unit variance).
These proposed augmentations allowed to train a model of-
fering spectacularly good segmentation results, not only for
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infant iris samples, but also for adult irises, as shown in the
last column in Fig. 3.

The combined training data, including 20,931 adult iris
images, was sourced from the following benchmarks: 2,639
images from the CASIA-Iris-Interval-v4 database [43],
1,283 images from the ND-Iris-0405 database [44], 800
images from the Warsaw-BioBase-PostMortem-Iris v2.0
[45] and ND-TWINS-2009-2010 [46] (iris images acquired
from identical twins) databases, 1,200 images from the
BioSec baseline corpus, 2,250 images from the UBIRIS.v2
database [47], which includes visible wavelength images
with only the red channel used, and 12,759 images from
the OpenEDS dataset [48]. Each image in this initial set
is accompanied by a corresponding ground truth segmen-
tation mask. These ground truth annotations come from
the IRISSEG-CC dataset by Halmstad University (for the
BioSec database), while the ground truth for the CASIA-
Iris-Interval-v4, ND-Iris-0405, and UBIRIS databases has
been provided by the IRISSEG-EP dataset by the University
of Salzburg. Ground truth masks of the OpenEDS dataset
are provided by Facebook.

5.2. Proposed Segmentation Model

In this study, we employed the nested U-Net archi-
tecture with dilated convolutions and attention blocks,
offered by the open source iris recognition project
[42], with a width of 64. That segmentation model
is based on a nested U-Net architecture that addi-
tionally uses a SharedAtrousConv2d layer imple-
menting (in parallel) standard and dilated convolutions
with shared weights. Each block in the network is
a SharedAtrousResBlock, comprising two shared
atrous convolutions, batch normalization, and ReLU acti-
vation, with a residual connection. The nested U-Net struc-
ture enables each level to fuse features from previous lay-
ers, while bilinear interpolation is used for upsampling and
downsampling. The final output layer consolidates features
from all nested blocks to produce a segmentation map.

We trained the model from scratch for 300 epochs using
a batch size of 32 × N , where N is the number of aug-
mentation repetitions. We used the MADGRAD optimizer
with a learning rate of 0.001, and a combination of cross-
entropy and dice losses. Fig. 3 shows the segmentation
results for infant, regular adult and post-mortem iris images
for the proposed model and selected state-of-the-art meth-
ods. Both the original (sourced from public benchmarks)
and augmented (to include infant-specific properties of iris
scans) images were used in training. A small set of hand-
annotated authentic infant iris images was used in validation
to pick the best model by maximizing average intersection
over union between predicted and ground truth masks.

5.3. Infant Iris Recognition Approach

Infant iris segmentation is the key component that dif-
fers from adult iris recognition pipeline. Thus, to create
fully-functional infant iris recognition methods, we coupled
the proposed new segmenter with a few existing iris feature
extraction approaches (HDBIF, OSIRIS, USIT and DGR),
which are evaluated in the next section.

6. Experiments and Results
6.1. ISO/IEC 29794-6 Quality of Infant Iris Images

To evaluate the quality of infant iris images (from the
biometric sample quality standpoint), we selected eight
ISO/IEC 29794-6 iris image quality metrics and compared
their values between infant and adult images. These met-
rics cover factors such as iris pattern visibility, the pupil-to-
iris size ratio, pupil shape regularity, gray-scale utilization,
and image sharpness. Additionally, we calculated an overall
quality metric that integrates these properties, as defined in
ISO/IEC 29794-6. The adult samples are sourced from the
ND-Iris-0405 database [44].

As shown in Fig. 4, infant iris
images exhibit higher scores of the
USABLE_IRIS_AREA, IRIS_SCLERA_CONTRAST,
GREY_SCALE_UTILISATION, IRIS_RADIUS,
PUPIL_IRIS_RATIO, and MOTION_BLUR metrics
compared to those obtained for adult samples. However,
the SHARPNESS scores for infant samples range between
10 and 50, which is low compared to adult irises, possibly
due to more challenging acquisition in healthcare setup,
resulting in a higher probability of out-of-focus acquisition.
Consequently, the OVERALL_QUALITY score for infant
images is also lower than that of adult samples. One
contributing factor could be the low SHARPNESS score
and the IRIS_PUPIL_CONTRAST score, which is zero
for all infant samples due to pupils being brighter than iris.

6.2. Feasibility of Infant Iris Recognition

A recent study suggested that while iris biometrics are
effective for children aged two and older, their effective-
ness diminishes for those under two years old [14]. To
validate this claim we performed iris matching and calcu-
lated selected performance metrics including the decidabil-
ity score d′ [23], Failure-to-Match (FTM) rate, Equal Error
Rate (EER), and Area Under the Receiver Operating Char-
acteristics curve (AUC).

Fig. 5 presents the genuine and impostor score distribu-
tions obtained for vanilla iris recognition methods designed
for adults. All possible genuine and impostor pairs, possible
to be generated from 1,920 infant images, were considered
in this study. VeriEye is not shown in Fig. 5 since this
commercial matcher was not able to process any infant iris
image (thus FTM=100% for this method). Also, DGR is not
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Figure 3. Comparison of iris segmentation visualizations across various states: infant, adult, and post-mortem. The visualizations compare
the performance of our developed model with state-of-the-art methods. The model effectively segments irises with varying characteristics,
including dark, bright, small, and large pupils.
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Figure 4. Distributions of the selected ISO/IEC 29794-6 iris image quality metrics calculated for adult and infant iris samples.

shown in Fig. 5 since this approach proposes only texture
encoding but not iris image segmentation. The FTM rates
for USIT and OSIRIS vanilla methods were 15.50% and
0.0%, respectively, while HDBIF and WIRIS approaches
exhibited much higher FTM rates of 55.69% and 99.13%,
respectively, reflecting difficulties due to insufficient usable
iris bits available after segmentation stage.

Fig. 6 presents results after replacing vanilla segmenters
with the proposed infant iris segmentation (IIS) model. The
results clearly indicate a substantial improvement in perfor-
mance across all matchers. Especially, the FTM rate was

reduced to 0.0% across the board. The HDBIF matcher saw
a remarkable improvement, with the decidability score (d′)
rising from 0.92 to 3.23, EER dropping from 34% to 4%,
and AUC increasing from 0.73 to 0.99. Similar performance
gains are also observed for the USIT and OSIRIS encoding
approaches. Notably, the DGR iris texture encoder allowed
to achieve the highest d′ score of 3.70. The OSIRIS matcher
integrated with our segmentation model demonstrated the
best performance, achieving an EER of 3%. These promis-
ing results obtained after replacing the standard iris seg-
mentation with the proposed segmenter suggest that there
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Figure 5. Distributions of genuine and impostor scores for four
iris recognition methods that were able to process infant iris im-
ages. Vanilla segmentation models and encoding approaches were
used, with default parameters suggested by the original method au-
thors. Selected performance metrics (d′ statistic, Equal Error Rate
(EER), Failure-to-Match rate and Area Under ROC curve (AUC)
are also shown.
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Figure 6. Distributions of genuine and impostor scores for four
combinations of the proposed Infant Iris Segmentation (IIS) model
and various iris texture encoding methods originating from four
different iris recognition approaches. We see a significant boost in
performance when the proposed segmentation model is incorpo-
rated into infant iris recognition pipeline, compared to Fig. 5.

are chances of building an effective infant iris recognition

method with infant-specific iris image processing.

7. Discussion
Infant iris recognition performance Our study aimed to
validate whether an effective iris recognition system can be
built for infants. While the VeryEye matcher was unable to
process newborn images due to its stringent requirements
tied to properties of adult iris images, other matchers, par-
ticularly when integrated with our proposed segmentation
model, demonstrated significantly improved performance,
with EER not exceeding 4% and d′ score ranging from 2.7
to 3.7, what indicates a reasonable capability in distinguish-
ing between genuine and impostor infant iris images. These
results suggest that with appropriate preprocessing and seg-
mentation, iris recognition can become a new and reliable
identification means for infants and neonates.

Limitations This study for the first time, to our knowl-
edge, proposes and evaluates an iris recognition system
specifically designed for infants, with two custom-designed
and crucial components: hardware (acquisition) and image
processing (segmentation). Being an early-stage study it
also has several limitations, that we want to list here and
address in immediate future research efforts. First, all in-
fant iris images were acquired in a single session. One of
the most crucial questions, after seeing in this paper good
chances of having such images properly processed and en-
coded, is how stable the iris pattern is in the first weeks and
months of human’s life. Second limitation is a relatively
small number of subjects in our dataset, which includes
only 1,920 samples from 17 individuals, all collected in the
same hospital. This limited sample size may not capture
the variability present in larger, more diverse populations.
Furthermore, the absence of publicly available datasets of
infant irises, or any other iris recognition methods specif-
ically designed for infant iris recognition restrict our abil-
ity to benchmark our results against broader external data
sources and other algorithms for infant iris recognition.

We do hope, however, that this pioneering study will
contribute to expanding the iris recognition methodology to
infants and neonates, and will bring identification means in-
creasing safety of the youngest members of our population.
The proposed segmentation model, source codes and syn-
thesized infant iris images are made available along with
this paper to facilitate achieving this goal.
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