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1. Simulating User Clicks

In this section we discuss how we simulate the clicks.
More precisely, we want to answer the question: Given a
predicted mask mτ and a ground truth mask mGT, where
do we place the next click in order to help our network with
improving the mask? We follow common practice and use
the method described in [10].

1. For each click we simulate, we compare mτ with mGT
to obtain the mask of false positives mFP and the mask
of false negatives mFN.

2. Afterwards, we compute the euclidean distance trans-
forms (see [4]) of both masks, DFP and DFN.

3. We will then look for the maxima of DFP and DFN.
The coordinates of the higher maximum will be the
location of the simulated click.

4. Depending on whether this maximum is found in either
DFP or DFN, we will label it as a background (-) or
foreground (+) click, respectively.

It should be noted that this metric allows for improving
the system at the cost of practical usability. If we were to
simulate the clicks during training in the exact same way
as we do during testing (taking the maximum of the two
distance transforms), we would prepare our model to op-
timally perform under the metric. This can for example
be seen in [5, 7]. As [10] however mentions, this inhibits
the practical usability of the model, since an actual human
would choose other non-optimal click positions. We would
see a kind of overfitting to the metric. To make sure the
training of our model adheres to practical requirements, we
follow common practice [1,6,8–10] and use additional ran-
dom clicks during each training step.

Depth WSESeg Average
NoC@85 NoC@90

2 6.962 9.587
3 6.311 9.091
4 6.944 9.163
5 6.689 9.310
6 6.524 9.023

Table 1. A comparison of the change in performance for different
numbers of ViT blocks. The depth does not refer to the backbone,
but the additional blocks after mixing the image and prompt fea-
tures. The NoC is the average over all classes.

2. Changing the Number of Encoder Blocks af-
ter Adding the Prompts

The prompt features and the image features in our archi-
tecture are fused by multiple transformer encoder blocks. In
our standard model we chose four as the number of blocks.
In Tab. 1 we compare the performance of the model when
altering the number of blocks (the column Depth). We can-
not observe a clear trend, as a continuous increase of the
number of blocks does not necessarily cause an improve-
ment. We even see that reducing the number of blocks to
three gives a slightly better performance for a NoC@85
of 6.94 to 6.31, although the best performance depends on
the metric, with 6.31 for the NoC@85 and 9.023 for the
NoC@90.

3. Qualitative Examples from SHSeg

In Figure 1, we can see qualitative examples from
our newly proposed SHSeg (Skiing Human Segmentation)
dataset. Our dataset provides 534 masks for skiers on 496
images. The images have been randomly sampled from the
SkiTB dataset [2, 3]. A link to the data can be found in our
main paper (publication of data upon acceptance).
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Figure 1. Examples for the masks occurring during the interaction. The left column displays the predicted mask along with the clicks.
Foreground clicks are green, background clicks are red and the masks are blue. The right column displays the corresponding ground truth.
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