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Figure 1. FlatTrack Gaze Estimation. (a) PhlatCam lensless camera allows development of small form-factor gaze tracker. (b) We
propose a large dataset of paired lensless captures and gaze directions, which we use to evaluate the efficacy of (c) various lensless gaze

estimation techniques.

Abstract

Existing eye trackers use cameras based on thick com-
pound optical elements, necessitating the cameras to be
placed at focusing distance from the eyes. This results in
the overall bulk of wearable eye trackers, especially for
augmented and virtual reality (AR/VR) headsets. We over-
come this limitation by building a compact flat eye gaze
tracker using mask-based lensless cameras. These cameras,
in combination with co-designed lightweight deep neural
network algorithm, can be placed in extreme close prox-
imity to the eye, within the eyeglasses frame, resulting in
ultra-flat and lightweight eye gaze tracker system. We col-
lect a large dataset of near-eye lensless camera measure-
ments along with their calibrated gaze directions for train-
ing the gaze tracking network. Through real and simulation
experiments, we show that the proposed gaze tracking sys-
tem performs on par with conventional lens-based trackers
while maintaining a significantly flatter and more compact
form-factor. Moreover, our gaze regressor boasts real-time
(>125 fps) performance for gaze tracking.

1. Introduction

Eye tracking plays a crucial role in Augmented and Vir-
tual Reality (AR/VR) systems, whether it be augmenting
the realism and interactivity of the immersive experience or
rendering efficient display imagery. For example, by pre-
cisely tracking where the user is looking at any given time,
eye tracking facilitates more natural and intuitive interac-
tions, such as gaze-based interfaces for selection and con-
trol, which can enhance the user engagement with the vir-
tual environment without the need for physical controllers
[20, 24].  Eye tracking also facilitates optimized usage
of system resources by rendering high-resolution graphics
only in the regions of the visual field where the user’s gaze
is well-focused, and there is less detail in the periphery, a
technique called foveated rendering that is shown to dramat-
ically improve the display performance [1,9, 12, 19]. Apart
from improving the overall graphical performance through
selective on-demand rendering, foveated rendering signifi-
cantly reduces computational load, allowing for smoother
and more immersive AR/VR experiences.
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Existing eye-tracking technologies (Tobii Pro, Pupil
Labs) face several significant challenges that impact their
practicality across various applications despite their rapid
developments in recent years. Apart from the need for more
accuracy and reliability, the physical size of eye-tracking
units often limits their integration into wearable AR/VR
headsets, posing significant design issues. Specifically, the
optical components like lenses, filters and their housing di-
rectly affect the overall size of the device. The structure
used to mount the sensors and associated electronics, in-
cluding the enclosure that protects these components, fur-
ther adds to the bulk of the system. Furthermore, privacy
concerns also arise as eye tracking can reveal sensitive per-
sonal information. As demonstrated in earlier works, eye
images can possibly be misused to reconstruct the scenes
being observed, which pose significant threats and privacy
concerns [2]. Finally, eye-trackers require low latency to
ensure responsive and immersive user experiences in in-
teractive applications. These obstacles necessitate contin-
uous advancements in hardware and software to enhance
the versatility and user-friendliness of eye-tracking technol-
ogy. Hence, we propose a lensless gaze-tracking prototype
that has a small form factor, inexpensive, lightweight, and
privacy-preserving [7, 14].

In lensless imaging, the focusing lens is replaced with
a thin, lightweight, and potentially inexpensive optical en-
coder, resulting in flat and lightweight miniaturized cam-
eras. A lensless camera uses advanced computational re-
construction algorithms to recover the scene from captured
sensor measurements, which no longer resemble the imaged
scene [4,5,7]. However, with a well-designed encoder, the
measurements contain sufficient information to recover an
image of the scene using post-processing algorithms that
can demultiplex the sensor measurements to reconstruct a
sharp image of the scene. While digital post-processing of
images is standard for tasks such as distortion correction,
synthetic depth of field, and denoising, lensless cameras are
fundamentally different in that the post-processing is a part
of the imaging system design where the optical imaging
hardware, and the algorithmic software is designed together.
Moreover, since lensless cameras encode information indi-
rectly in the measurement, then computationally extract it
by solving an inverse problem, they also provide promise
for enabling privacy in the eye tracking measurements [ 14].
Additionally, lensless cameras inherently capture the 3D in-
formation, which ensures a more accurate prediction [6].

In the current work, we employ a lensless camera design
accompanied by a lightweight convolutional neural network
to achieve compact eye tracking. Specifically, we use a
Near-Infrared (NIR) PhlatCam [7] to develop an ultra-thin
near-eye tracker. Using our system, we collect the first-
of-its-kind large dataset of nearly 20000 paired lensless
captures and calibrated gaze vectors. We propose a two-

stage approach for estimating gaze from lensless capture
and evaluate the efficacy of such an approach on our pro-
posed dataset. Our experiments show that lensless cameras
allow us to build compact gaze trackers with high-fidelity
gaze estimates. We plan to release the dataset and gaze
tracking algorithm upon acceptance of the paper.

In summary, our contributions in this paper are:

* We build a system using NIR PhlatCam prototype for
gaze tracking. Existing works on lensless gaze estima-
tion have mostly shown results on simulated data that
don’t capture the real data’s non-idealities.

* We collect a large dataset of 20475 paired lensless cap-
tures and gaze directions from a near-eye setup. To the
best of our knowledge, we are the first to collect such
a dataset for lensless gaze tracking.

* We build a two-stage gaze estimator to evaluate the
efficacy of lensless gaze estimation and demonstrate
that lensless cameras allow high-fidelity gaze recovery
with a much smaller form factor. Our gaze regressor
performs real-time (>125 fps) gaze estimation.

2. Related Works

Mask-based Lensless Imaging. Mask-based lensless
cameras replace the lens of conventional cameras with a
thin optical mask. This mask has the ability to modulate
the incoming light and can be placed extremely close to the
sensor, leading to a flat form factor. Moreover, the ultra-
small mask-to-sensor distance allows these cameras to have
a large depth of field, thereby making it possible to image
from a very close range - a property that will allow lensless
camera-based gaze trackers to have a much smaller form
factor. Multiple lensless cameras have been developed in
the literature. FlatCam [5] is a lensless camera that places
a separable coded amplitude mask above a bare sensor ar-
ray to enable a thin and flat form-factor imaging device,
which can simulate a conventional camera by reconstruct-
ing conventional images from coded measurements. Dif-
fuserCam [4] and PhlatCam [7] replace the coded ampli-
tude mask from FlatCam [5] with a coded phase mask for
improved light efficiency and reconstruction quality. Spec-
tral DiffuserCam [!7] exploits the multiplexing ability of
lensless imagers to do hyper-spectral imaging. The primary
differences in the above design lie in the pattern of the mask
used and the mask-to-sensor distance. In this work, we will
primarily focus on the PhlatCam [7] lensless camera. Pre-
vious works like [0, 14] have shown the application of this
camera design for 3D imaging and optical encryption. Pre-
viously, FlatCam [5] was shown in [23] to perform at par
with lensed cameras for gaze-tracking. However, the au-
thors only reported the performance on simulated data, and
ensuring the same performance on real data is hard. We take
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a step further and develop the first-of-its-kind real lensless
gaze dataset using PhlatCam. We run extensive experiments
on this real dataset to highlight the efficacy of our system.
We plan to release this dataset upon acceptance of the paper.

Gaze Tracking Datasets. Since learning-based gaze
trackers need large datasets, many such datasets have been
proposed in the literature for both remote and near-eye gaze
tracking. Among the remote gaze tracking datasets, MPII-
Gaze [25] contains 214K face images captured using a lap-
top camera from 15 subjects along with their gaze vectors.
Columbia Gaze [22] contains 5880 images from 56 people
and focused on gaze locking. GazeCapture [16] contains
2.5M frames collected from over 1450 people. Among the
near-eye gaze tracking datasets, NVGaze [15] contains both
real and synthetic data of 2M infrared images of eyes at
1280 x 960 resolution. OpenEDS [18] contains more than
500K eye-images with the corresponding 3D gaze vectors
collected from 80 participants. Recently, [3] proposed a
dataset captured using a DAVIS event camera. This dataset
contains both event and grayscale frames along with the cor-
responding gaze. Although the existing datasets contain a
wide distribution of eye images and environment, none of
them are suited for lensless cameras, which have a very
distinct imaging model. Thus, there’s an urgent need for
a dataset developed specifically for lensless cameras.

3. Lensless Imaging Background

In a mask-based lensless camera [5, 7] like the one used
in this work, the conventional lens is replaced by a thin opti-
cal mask placed at some distance from the sensor that mod-
ulates the incoming light. For a scene X, the measurement
recorded by a sufficiently large sensor Y is given by:

Y=PxX+N, 6]

where * is the full-size convolutional operator (no cropping
due to finite sensor size), P is the point spread function
(PSF), and N is additive noise. The PSF is the response
of the camera to a point source. The optical mask can be
implemented using an amplitude mask that attenuates the
incoming light [5] or a phase mask that modulates based on
diffraction [7]. In this work, we use a phase mask. The
lensless PSF is a function of the mask pattern, wavelength
of light, and the mask-sensor distance. Our PhlatCam uses
a phase mask designed for NIR wavelength of 700nm and
is placed slightly less than 1.5mm from the sensor.

Due to the lack of a focusing element like a lens, a lens-
less camera capture is a multiplexed representation of the
scene. To recover the original scene, one needs to computa-
tionally solve an inverse problem of estimating the scene X
given the measurement Y and PSF P, which is challenging
due to properties like large PSF support (which can be big-
ger than the scene projection X), finite sensor size, noise,
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Figure 2. PhlatCam Imaging Pipeline. (a) Shows the forward
imaging process and the lensless capture. Note that the capture
doesn’t resemble the scene it is imaging. (b) Reconstructing the
scene back involves solving an inverse problem computationally.

etc. Although there exist different methods of lensless scene
reconstruction in the literature, we will primarily focus on
the two most popular methods — FlatNet [13] and Wiener
deconvolution. Please see Fig. 2 for the lensless imaging
and reconstruction process.

4. FlatTrack:Lensless Gaze Estimation Dataset

We use an NIR-PhlatCam designed for 700nm to cap-
ture the FlatTrack Gaze Dataset. We collected a compre-
hensive dataset comprising 20,475 lensless measurements
meticulously gathered from 13 distinct subjects. The impor-
tance of user-specific data lies in the practical application
of eye-tracking systems, where such systems are typically
fine-tuned or calibrated for individual users using a small
amount of personalized data. This calibration process is es-
sential in real-world scenarios, such as AR/VR applications,
where precise gaze estimation requires personalization.

Each subject participated in a series of experiments in
which they were tasked with focusing on stimuli presented
on a computer screen. The stimuli moved along a 15x15
grid pattern as in Fig. 3 within a 1080x1920 pixel area of
the monitor (DELL S2421HN), and their eye images were
captured by the lensless camera. To ensure accuracy, sub-
jects were seated 50 cm away from the screen, and before
each round of data collection, calibration was performed to
align the center of the eye with the origin on the screen.
This process was repeated for each round of data collection
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Figure 3. FlatTrack Dataset.(a) The capture setup used to collect the
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FlatTrack dataset. Note the small (~ 4c¢m) distance between the

camera and the eye. (b)The 15x15 grid on the monitor used as stimulus points to capture data has an FoV of 53.03 degree and 29.80 degree
along x & y axis. The pixel distance along x and y directions are 121.3 and 65.3 pixels respectively. (c) FlatNet reconstruction of 6 images

each across the grid from 4 subjects are displayed

for every subject. We also ensured that the distance between
the eye of the subject and PhlatCam is approximately 4cm.
We collected 4 to 5 rounds of data for each subject, each
round comprising either 225 or 675 images (multiple mea-
surements) corresponding to the 15 x 15 grid pattern. For
each measurement, we also note the gaze point in pixels on
the monitor and convert it to a unit vector in the gaze direc-
tion using the known monitor distance.

The distance between two consecutive stimulus points
along the x-direction in the grid pattern measures 121.3 pix-
els, while along the y-axis, it is 66.3 pixels. A margin of 50
pixels was also uniformly removed from all four sides of
the grid to mitigate any potential edge effects. The field of
view (FoV) subtended by the eye along the x-axis, spans
53.03 degrees. Similarly, the FoV along the y-axis extends
to 29.6 degrees. Our capture setup, grid pattern, and lens-
less reconstruction of captured data are shown in Fig. 3.

Analysis of the angular differences between two consec-
utive grid points along the x-axis reveals a distinct trend
characterized by an initial increase, peaking, and subse-
quent reduction. The minimum angle along the x-axis and
y-axis is observed to be 3.21 degrees and 1.77 degrees, re-
spectively. These trends are observed along the edges as the
angular distance reduces with distance from the eye.

5. Lensless Gaze Estimation Approach

Since lensless measurements are globally multiplexed
and do not resemble the scene, we use a two-stage approach:
in the first stage, we use a reconstruction algorithm to obtain
the scene estimate from the lensless captures; in the second
stage, we use a gaze-regressor neural network to obtain the

gaze direction. We discuss the approach in detail below.
Scene Reconstruction. Given the lensless forward
model described in Eq. 1 Scene reconstruction from lens-
less capture involves solving an inverse problem of estimat-
ing the scene X, given the measurement Y and PSF P, i.e.,

X = F(Y, P), 2)

where X is the scene estimate and F is the reconstruction
algorithm. In this work, we experimented with two different
approaches for F(.) — Tikhonov-regularized least-squares
(also known as Wiener deconvolution) and a learning-based
algorithm called FlatNet [13]. Tikhonov Regularization in-
volves solving the following equation, where Y is the lens-
less measurement, P is the PSF, and X7 is the scene esti-
mate.

Xy = argmin [[Y — P« X%+~ X% A3)

This equation has the following closed-form solution,
where F'(.) is the Fourier transform and gamma is set to

le-5.
(FP) o F(Y))
|[F(P)]? 4+

For the learning-based FlatNet, we use pre-trained weights
obtained by training it on a natural image dataset. Flat-
Net consists of two stages: (1) an inversion stage that maps
the measurement into a space of intermediate reconstruction
by learning parameters within the forward model formula-
tion, and (2) a perceptual enhancement stage that improves
the perceptual quality of this intermediate reconstruction.
These stages are trained together in an end-to-end manner.

Xr=F" ( @)
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Figure 4. Lensless Gaze Estimation Pipeline. We follow a two-stage approach. In the first stage, we use a fixed lensless reconstruction
algorithm to obtain the scene estimate. In the second stage, a gaze regression neural network predicts the gaze vector given the reconstruc-
tion. Using the loss function, the gaze regressor is updated while the reconstruction algorithm is frozen.

Gaze Regressor. Once the scene estimate Xis obtained,
we use a gaze regression network to finally predict the gaze
direction. Our network first predicts the unit vector corre-
sponding to the gaze direction. We then project this 3D gaze
direction to a 2D gaze point (in pixels) on the monitor using
the known distance between the monitor and the eye.

Loss Function. Once the gaze points on the monitor
are estimated, we then use L1 loss on the predicted and
groundtruth gaze points. More specifically, we use,

L =1|Ger — Gpreplh; (3)

where Ggr and Gprpp are the ground-truth gaze point
and predicted gaze point, respectively. Finally, we use this
loss to update the gaze regression stage while keeping the
reconstruction stage frozen. We show our gaze estimation
pipeline in Fig. 4.

6. Experiments

In this section, we provide details of the implementa-
tion of our training strategy and a comprehensive evaluation
of the gaze estimator. We benchmark various eye-tracking
algorithms on our FlatTrack dataset and evaluate the per-
formance on angular error and inference times. We also
perform a quantitative comparison of lens-based v/s lens-
less imaging systems. We also assess the different lensless
reconstruction methods: Wiener and FlatNet. Finally, we
analyze the average per-pixel error of gaze estimation.

6.1. Implementation Details

The FlatNet model is pre-trained on measurements sim-
ulated using Eq. | from the natural image MIRFLICKR

dataset [11]. We freeze this pre-trained FlatNet model for
the reconstruction of our captured measurements.

We evaluate the performance of the following gaze es-
timation models: ResNet-18 [10], EyeCOD [23], and Mo-
bileNetv2 [21]. Of the 4 or 5 rounds of images captured
for each subject, we keep one hold-out test round for each
subject, which is later utilized to evaluate our models. We
split the remaining dataset into training and validation sets
(80:20). For each subject, we crop out the eye region from
the reconstruction. We also perform random affine trans-
formations on the reconstructed eye images to augment our
data and to deal with small misalignments among the dif-
ferent sets.

Our models predict a 3D unit gaze vector corresponding
to a measurement. We follow a common training strategy
for all models, which involves pre-training the models on
the training dataset prepared above, followed by a subject-
specific fine-tuning in which we freeze all the model pa-
rameters except the last 2 layers and fine-tune for the spe-
cific subject’s training data. For training the models, 3D
gaze vector outputs from the models are projected into 2D
gaze positions using the known dimensions of the moni-
tor and distance from the screen. Following this, L1 loss
is calculated on these 2D labels and the 2D predictions for
training the models. The common training regimen spans
50 epochs, employing the Adam optimizer with a weight
decay of 0.0005, an initial learning rate of 0.0001, and a
StepLR scheduler with a decay factor of 0.5 every 5 epochs.
These hyperparameters remain consistent across all models
for pre-training and fine-tuning. Finally, for each subject we
test the fine-tuned model on the held-out set.
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Figure 5. Different Lensless Reconstruction Methods. (a) Flat-
Net reconstruction. (b) Wiener deconvolution. FlatNet provides
cleaner reconstruction.

6.2. Comparison of Lensless Reconstruction Meth-
ods

In this section, we conduct a comparative analysis of the
latency and performance of the ResNet-18 model using dif-
ferent lensless reconstruction methods, namely Weiner De-
convolution and FlatNet, on our captured dataset. Our pri-
mary focus is to evaluate the trade-off between accuracy and
inference time. The results of our comparison are summa-
rized in Table 1.

Reconstruction Average Inference Time
Method Error (in deg) (in ms)
Weiner 2.08° 3.81
FlatNet 1.92° 7.81

Table 1. Weiner v/s FlatNet. We demonstrate that Flatnet based
gaze-estimator achieves better accuracy while maintaining real-
time gaze prediction with an equivalent to ~130 fps or under
10ms. The best result is in bold.

Fig 5 shows the example of a captured image recon-
structed through both methods. The FlatNet reconstruction
looks much cleaner and has less noise, which can be at-
tributed to its better gaze estimation performance.

We observe minimal latency variation across both meth-
ods with a clear performance improvement in the case
of FlatNet reconstruction; hence, we utilize the FlatNet
method for our experiments. Note that these latency metrics
are evaluated on an NVIDIA GeForce RTX3080 Ti graphics
card and Intel Core i9-10900KF processor.

6.3. Gaze Estimator Comparison

In this section, we present the comparisons of the gaze
estimation stage on the FlatTrack dataset. For this experi-
ment, we fix the reconstruction stage as FlatNet and eval-
uate the performance of three different gaze estimators:
ResNet-18 [10], EyeCOD [23], and MobileNetv2 [21]. We
initialize ResNet-18 with ImageNet weights and replace the
last layer to predict a 3D gaze direction. EyeCOD is a
gaze estimation model proposed by You et al. [23] for Flat-

Cam captures. EyeCOD incorporates RITnet [8] for seman-
tic segmentation to crop out the Region of Interest(ROI)
around the pupil consisting of the pupil, iris, and sclera,
which is then passed on to ResNet-18 for gaze estimation.
Since MobileNetv2 is specifically designed for on-the-edge
devices and embedded vision applications where computa-
tional resources are limited, we also experiment with it.

We evaluate the performance of these gaze estimation
architectures on the held-out test set for each subject based
on the average angular error on the 3D gaze vectors and
the inference times. We report two different errors in Table
2. The best-case error corresponds to the error on the held-
out set for the subject with a minimum average error, while
the average error is calculated across all the subjects. We
also report the inference time evaluated on a single NVIDIA
GeForce RTX3080 Ti graphics card.

Gaze Best-Case | Average Inference
Estimator Error Error time (in ms)
ResNet-18 0.91° 1.92° 7.81

EyeCOD 0.95° 1.82° 22.72
MobileNet 1.08° 2.43° 7.67

Table 2. Gaze Estimators Performance. We use ResNet-18 as
our base model for experiments as it has a comparable perfor-
mance within 5% of the EyeCOD model with a 3X reduction in
inference time. The best result is in bold, while the second best is
underlined.

We observe only 5% improvement in performance using
the EyeCOD methodology, although it bears a 3.X increase
in inference time. Clearly, Resnet-18 proves to be a better
trade-off, so we perform further experiments using Resnet.

6.4. Comparison of Lensed v/s Lensless Imaging
Systems

In this experiment, we assess the performance dispar-
ity between images captured by lensed and lensless cam-
eras. As previously noted, there is no existing real-world
dataset specifically for lensless eye tracking, which makes
direct comparison with conventional datasets challenging.
However, we have addressed this by simulating lensless
measurements using the Davis-GS dataset [3], which in-
cludes user-specific data. This is a crucial aspect, as our
collected dataset also includes user-specific labels, making
Davis-GS the most relevant benchmark for comparison. In
contrast, datasets like OpenEDS2020 [18] do not provide
user-specific labels, which makes them less suited for eval-
uating fine-tuned eye-tracking systems. More specifically,
our evaluation focuses on comparing the performance of
ResNet-18 on original lens images and lensless simulated
images. The simulation process involves convolving the
images with the point spread function (PSF) of our camera
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with some additive noise as described in Eq. 1 and subse-
quently reconstructing them using FlatNet [13].

There are 27 subjects in the Davis-GS dataset, out of
which we use 21 subjects’ data for pre-training our gaze
estimator and the remaining 3 subjects’ data for fine-tuning
and evaluation. Since the Davis-GS dataset consists of mul-
tiple images for random grid locations, we take one image
for each grid pixel location (to avoid data imbalance) per
subject and simulate lensless measurement. For fine-tuning
the gaze estimator, we partition the 3 subject’s data into
train, validation, and test sets. After fine-tuning the model
for respective subjects, we evaluate it on the test data for
each subject.

For pre-training and fine-tuning, we follow the same
methodology as explained in Section 6.1. However, here,
due to the unavailability of 3D gaze vectors, we directly
train the models on 2D gaze positions, which corresponded
to the pixel location of the stimulus on the screen; hence, we
replaced the last layer with a fully connected layer with the
output size of 2 and borrow the other hyperparameters as
mentioned in Section 6.1. For fine-tuning, we unfreeze the
last 2 layers of the pre-trained model and train on the test
subject data. For the calculation of angular error, we first
convert the predictions and labels to 3D gaze vectors using
the known dimensions of the monitor and the distance of
the subject from the screen. We report our findings on the
test set using the average gaze angular error in degrees for
the test set for each subject as summarized in Table 3.

Lensed | Lensless
(in deg) | (in deg)
Subject25 1.79° 1.84°
Subject26 1.72° 1.81°
Subject27 1.67° 1.62°

Subject

Table 3. Lens v/s Lensless. There is minimal difference in the
performance for the lens and lensless images.

From Table 3, we can observe minimal difference in the
performance of the two imaging systems, indicating that the
lensless imaging system doesn’t introduce a significant per-
formance loss while allowing a compact form factor.

6.5. Lensless Gaze Estimation Analysis

In this section, we analyze the errors observed in our ex-
periments. To start with, the average error (across all sub-
jects) at each grid pixel location is shown in Fig. 6. The
radius of the circle in the plot is proportional to the gaze pre-
diction error. A circle with a higher radius implies more er-
ror. Six points are circled randomly from the grid, and their
corresponding eye image reconstruction is also displayed
on the side.

We observe that the grid locations with lesser error cor-
respond to better lensless reconstructed images, with pupils

Average Error per Pixel Points on the Grid
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Figure 6. Error Across the Grid. The average per-pixel error
for all 225 points in the grid across all subjects is displayed as a
circle. Six grid points are circled, and their corresponding images
from a subject dataset are displayed. The larger error corresponds
to reconstructed lensless images of poor quality due to harsher il-
lumination.

properly visible. Other points with high error are relatively
dark images that lack pupil resolution. This is due to a lack
of proper lighting as some of these points are farther away
from the light source. A fix for these points with higher
error would be to place additional light sources near them.

7. Conclusion

We propose a gaze-tracking framework for thin, lensless
cameras. Lensless cameras, due to their ultra-thin form fac-
tor and lightweight nature, are attractive for applications re-
quiring eye gaze tracking, such as Augmented/Virtual Real-
ity. However, existing works on gaze estimations have not
fully exploited this advantage. One of the bottlenecks for
fully exploiting the benefits of lensless cameras for gaze
tracking is the lack of a lensless gaze dataset. To deal
with this, we propose the FlatTrack dataset - a first-of-its-
kind NIR PhlatCam gaze dataset collected from 13 subjects
and contains around 20K paired lensless measurements and
gaze ground truth. Using a custom lensless gaze estimation
pipeline evaluated on the FlatTrack dataset, we show that
lensless gaze estimates can be of high fidelity. Furthermore,
these gaze estimation algorithms can run at very high speeds
(>125 fps) on a typical GPU. We hope the proposed dataset
and the pipeline, when released, will drive more innovation
in this promising space.
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