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Abstract

Research on Neural Radiance Fields (NeRF) has ad-
vanced rapidly due to their ability to impressively recon-
struct 3D scenes from perspective camera images alone.
Recently, other modalities, such as LiDAR point clouds and
satellite imagery, have also been successfully explored for
NeRF models. Despite the potential to create accurate re-
constructions from each of these data sources, it can only be
realized when the available data sufficiently covers a scene
of interest, a condition that is hard to satisfy in practice
for these sensor modalities in isolation. To tackle this is-
sue, this work studies the unexplored task of training NeRF's
by combining ground-based and satellite-based data, two
data sources with complementary coverage attributes. We
propose CaLiSa-NeRF, a novel NeRF model that simulta-
neously integrates perspective camera images, satellite im-
ages with Rational Polynomial Coefficients (RPCs), and Li-
DAR point clouds to represent urban environments better.
Various techniques are introduced to harmonize these het-
erogeneous sensor inputs for NeRF training and the result-
ing methods are able to represent both side and top views,
unlike the methods restricted to a particular data origin.
We demonstrate the effectiveness of the proposed methods
by training and evaluating them on a real dataset collected
from Riyadh.

1. Introduction

The first Neural Radiance Field (NeRF) model was pro-
posed in [ 1] to create photorealistic representations of a 3D
scene from a collection of perspective images with known
poses by means of learning optical properties of scene with
a neural network. It has garnered significant attention from
researchers due to its impressive reconstruction quality and
conceptual flexiblity, though still having significant limita-
tions. Subsequent research has sought to address these lim-
itations by improving its computational performance [12]
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and extending its applicability to more uncontrolled and un-
bounded environments [ 1, 9].

One improvement direction involves incorporating dif-
ferent types of data into the method, in addition to or as a
replacement for the ubiquitous use of perspective camera
images. In particular, depth information can facilitate train-
ing by providing direct information about the occupancy
on a region, thus improving novel view synthesis quality
with fewer training images. This information can be ob-
tained from diverse sources, such as structure from mo-
tion [3], LIDAR point clouds [2, | 3], and depth completion
methods [14]. Another valuable source of information is
satellite imagery, as this sensor modality can complement
data coverage limitations from ground sensors (e.g., view-
ing a scene from the top), while also providing logistical
benefits in comparison to both ground and aerial collec-
tion. However, satellite images, besides having their own
resolution and data coverage limitations (e.g., viewing a
scene laterally), present additional challenges in their us-
age with NeRF models. They are often captured over mul-
tiple dates, making factors like solar direction [4] and tran-
sient objects [7] important considerations and they also re-
quire more complex camera models than the typical pin-
hole one, such as the rational polynomial coefficient (RPC)
model. Despite these complexities, satellite-based NeRF
models [8] have been shown to reconstruct urban environ-
ments more effectively than conventional multi-view stereo
methods [5].

Several studies have augmented NeRF models to im-
prove their results on urban environments, potentially at
city-scale level. Some studies partition 3D regions of the
environment [16] or regions within training images [18]
and train multiple NeRF models in a more scalable man-
ner. Other works [13,19] incorporate LiDAR data with cam-
era images to identify scene elements (such as dynamic ob-
jects and the sky) that can be more efficiently handled when
treated separately from other elements. Drone-captured im-
ages [ 18] and satellite images [8] have also each been used
in isolation to model an urban environment with a NeRF.
Nevertheless, whether satellite, aerial, or ground data, these
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Figure 1. Overview of the CaLiSa-NeRF Framework: Integrating
RGB pinhole camera images, LiDAR point clouds, and satellite
imagery to create a unified NeRF model.

methods are limited by the restrictions inherent in their
respective sensor modalities. Aerial images may not be
able to be used due to their cost and regulatory constraints.
Ground images alone cannot offer top-down views of the
urban environment, while satellite images cannot offer side
views.

In this work, we present CaLiSa-NeRF, a unified NeRF
model that combines data from perspective camera images,
LiDAR point clouds, and RPC satellite imagery to represent
outdoor urban scenes. We design specialized data process-
ing and training procedures for CaLiSa-NeRF, including ray
sampling for satellite images using RPC coefficients, to ef-
fectively integrate these heterogeneous data sources. We
further optimize the NeRF architecture and loss function to
handle the unique characteristics of these inputs.

The main contributions of this research are as follows.
First, we propose a NeRF model training framework that
integrates perspective camera images, LiDAR point clouds,
and satellite imagery. To the best of our knowledge, this
is the first work to combine satellite-level data with any
ground-level data to train a NeRF, thus also being the first to
incorporate these three modalities simultaneously. Second,
CaLiSa-NeRF performs a novel view synthesis of outdoor
urban environments from random camera poses. Specifi-
cally, training with both ground data and satellite imagery
enables the representation of both side views and top views
of urban areas. Lastly, We validate the performance and
versatility of CaLiSa-NeRF through experiments using data
collected in Riyadh.

2. Related Work
2.1. Neural Radiance Fields

Neural Radiance field (NeRF) [ 1] is typically used as an
umbrella term to describe methods that use machine learn-
ing techniques to model the opacity and color information at
each spatial position in a scene. This information is aggre-
gated along arbitrary rays through a process called volume
rendering, resulting in the ability to synthesis novel views

from arbitrary locations within the scene. Given a ray, r,
from the desired novel view, described by an origin o € R3
and a direction d € R3, the position of any point x along it
can be described by x = o + td for some scalar ¢ that en-
sure appropriate ray start and termination locations induced
by tstart and teyq respectively. The radiance information
along a ray is aggregated into the ray color C according to:

cry= [ W), e @), ddt 0

tstart

where c is the color at a specific 3D location and direc-
tion (which can be encoded with 2 coordinates) and W is
a weight factor that can be computed from the opacity o
along the ray:

W(r(t),t) = T(r(t), t)o (r(t)) 2)

t
T(r(t),t) = exp (—/ U(r(s))ds) 3)
tstart

The quantity 7' is the transparency or transmittance along
a ray and quantifies the extent to which light can propagate
between the start of the ray and the sample position. The
opacity or denisty o reflects the rate of light absortion and,
conversely, the rate of light emission.

In practice, these integrals are discretized along sam-
pling points, while the opacity and color information per
point is represented as a learnable functions of arbitrary lo-
cations and directions in the scene, typically using neural
networks. This allows the training of these mappings by
minimizing a photometric loss between the color C of ren-
dered rays and the ground-truth color C associated with a
training image for the same ray:

Lres(R) =Y |[C(r) - C(r)|]*. &)

reRr
where R is the set of the sampled ray used for training.

2.2. Depth Priors and LiDAR Integration in Neural
Radiance Fields

In recent years, various approaches have been developed
to integrate depth priors into NeRF for enhanced scene rep-
resentation. This extra information typically improves the
learned geometric structure of the NeRF, leading to quality
on non-training images, especially on the few-shot scenar-
ios.

Some methods leverage depth information from the
available image data or pre-existing models. DS-NeRF [3]
utilizes sparse 3D features obtained from Structure-from-
Motion (SfM) for depth-aware scene reconstruction. This
sparse depth information is transformed into dense depth
data in [14] by leveraging depth completion networks.
Point-NeRF [22] uses cost-volume based neural networks
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Figure 2. Data processing workflow for sampling rays from multi-modal data sources for NeRF training.

to predict depth and reproject 2D images points into 3D in
order to facilitate an alternate point-based scene representa-
tion.

Other methods focus on utilizing LiDAR measurements
as source of depth information to supplement camera data
or as target for learning. For example, Urban Radi-
ance Fields [13] integrates expected depth and line-of-sight
losses to refine scene representation, while CLONER [2]
decouples learning of geometry and color by training a net-
work for occupancy prediction exclusively on LiDAR infor-
mation and a separate network for color prediction exclu-
sively on color images. Another method, called NFL [6],
only utilize LiDAR point clouds. It focuses on synthesizing
realistic LIDAR scans from novel viewpoints by a volume
rendering procedure suitable for active sensors.

2.3. Neural Radiance Fields for Large Scale Out-
door Environment

Training a NeRF outside of controlled small scale en-
vironments poses additional challenges. It is necessary to
account for data collection taken over long period of times,
with uncontrolled factors such as transient objects, varying
illumination and unbounded scenes. Furthermore, scalabil-
ity can become a concern, depending on the dimensions of
the scene and the desired level of detail in the reconstruc-
tion.

Unbounded scenes are often handled with warping tech-
niques that approximate a virtually infinite background
space with a finite one. NeRF++ [23] and Mip-NeRF
360 [1] contract unbounded scenes into bounded scenes
using sphere-like space warping for more efficient train-
ing and rendering. Moreover, F2-NeRF [20] generalizes
these space-warping techniques, enabling NeRFs to be
trained with images captured along random trajectories in
unbounded scenes. To represent a city-wide space in de-
tail, Block-NeRF [16] and Mega-NeRF [18] partition large

spaces into smaller subspaces, assigning individual NeRF
models to render each subspace, thereby allowing better
scaling beyond a single neural network. The problem of
handling aerial images from earth-scale to city-scale is ex-
plored in [21].

NeRFs have been trained with satellite imagery to re-
construct the 3D surface geometry and appearance of ur-
ban areas. Shadow-NeRF [4] was the first to train a NeRF
using multi-view, multi-date satellite imagery, accounting
for variations in solar lighting conditions and diffuse light
sources from the sky. Additionally, SatNeRF [7] and EO-
NeRF [8] replace the traditional pinhole camera model with
the RPC camera model, which is better suited for process-
ing satellite imagery and is a standard choice by suppli-
ers. These models utilize loss functions related to solar and
sky lighting, as well as transient phenomena introduced in
Shadow-NeRF and NeRF-W [9], respectively.

Besides satellite imagery, other sensor modalities have
been explored to train NeRFs for large outdoor environ-
ments. LiDAR measurements were used in [13] as depth
priors to maximize the efficiency of the sparse training data.
SUDS [19] uses optical flow and 2D descriptors on multiple
videos, in addition to LiDAR information.

This work aims to demonstrate the effectiveness of fus-
ing real data from ground-level collections in the form of
LiDAR and camera images with real satellite imagery. To
the best of our knowledge, no prior research has combined
these distinct types of information or incorporated perspec-
tives as significantly different as side views from up close
and top views from afar.

3. Method
3.1. Data processing

To train the NeRF model using the given multi-modal
data (ground RGB images, LiDAR point clouds, and RPC
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satellite imagery) each type of raw data must be prepro-
cessed as described in Fig 2.

First, the data captured on the ground is preprocessed
jointly. As both camera and LiDAR operate simultane-
ously, a point cloud with the collected LiDAR data can
be synchronized with each image based on their respec-
tive capture times The extrinsic and intrinsic parameters of
the perspective camera images, including lens distortion,
are estimated through bundle adjustment using tools such
as COLMAP [15]. Based on these estimated parameters, a
depth image is generated by measuring the depth between
the camera and the scene based on the LiDAR point cloud
and projecting it onto the image plane. The pairs of RGB
images and depth images are then both used to sample train-
ing rays from the ground.

Similarly, Each Rational Polynomial Coefficient (RPC)
in the satellite imagery is refined through bundle adjust-
ment [10]. After refinement, the satellite images are
cropped according to the desired region of interest (ROI)
to allow for more efficient sampling of rays. Since the num-
ber of satellite images is smaller compared to the number
of ground RGB images, we fix the ratio of ray samples be-
tween satellite and RGB images.

To combine ground data and satellite imagery, we repre-
sent both types in a common global coordinate system given
by UTM coordinates augmented with altitude values. As
mentioned in EO-NeRF [8], such system is locally Carte-
sian and has the advantaged of being aligned with the ver-
tical axis, which facilitate efficient use and specification of
the scene bounds. Global pose information for the ground
data is obtained with the help of GPS sensors, while georef-
erencing is already part of the satellite data product.

3.2. RPC ray casting

A custom camera is defined in nerfstudio [17] to gener-
ate rays for each pixel of images whose cameras are mod-
eled by RPC cameras, similar to the approach used in EO-
NeRF [8]. Unlike pinhole camera models, RPC camera
models define mappings between 3D coordinates and their
corresponding 2D pixel coordinates as the ratio of polyno-
mials. Rays from such mappings are determined from the
lines connecting two extreme points who share the same 2D
coordinates within a region of interest.

More specifically, a bounding box for the scene is de-
termined as the smallest bounding box that contains the
bounds of all the images associated with RPCs and ex-
pressed in the common system of UTM coordinates, as ex-
plained in subsection 3.1. Within this bounding box, rays
can then be defined for a pair of pixel coordinates as start-
ing from the point of highest altitude to the one of lowest
altitude. Proper scaling and normalization are also applied
to match rays with the bounding boxe used by NeRF itself.

(a) Ground data

(b) Satellite imagery

Figure 3. (a) The LiDAR point cloud is projected onto the pin-
hole camera images. (b) Examples satellite images cropped to the
region of interest of the scene.

3.3. Network Architecture and Loss

We utilize depth-nerfacto model available in nerfstu-
dio [17]. Depth-nerfacto is a depth-supervised version of
nerfacto, a nerftudio model meant to be a standard choice
that combines feature from several methods. It includes
components such as appearance embedding and hash en-
coding. Hash encoding enables fast training and rendering
of a NeRF model. Appearance embedding handles varia-
tions in the appearance of the scene such as illumination
changes, camera exposure, and transient objects. In partic-
ular, the appearance embedding is crucial for this problem
since the capture date, lighting condition and other view
specific characteristics of the ground RGB images and the
satellite imagery differ significantly.

For depth-supervision, we use the depth-loss function
based on Kullback-Leibler (KL) divergence described in
DS-NeRF [3]:

N,
Lagn(R) = 33" ~logwyexp (— LD,
rerR i=1 (5)

where D(r) is the measured depth, and o represents its stan-
dard deviation. The other notations are described in the sub-
section 2.1.

The total loss of the network model is represented as the
weighted sum of the color loss (4) and the depth loss (5):

Liotat(R) = LraB(R) + AMlaepth(Raeptn) — (6)

where Rgepin, C R is the set of rays having depth measure-
ment information, and A is the weight of the depth loss.

4. Experiment

The purpose of the experiment is to validate whether our
CaLiSa-NeRF can render the region of interest (ROI) from
wider range of novel views. For the experiments, we col-
lect and process the dataset. Given the dataset of the ROI,
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RGB RGB + Depth RGB + Depth + Sat. RGB + Depth + Sat.-150k

Figure 4. Rendered views of the mosque from various perspectives, including the rooftop, for all methods except ’Sat.’.

we compare the rendering performance of NeRF models 4.1. Dataset
trained with various data sources: RGB camera images, Li-

DAR point clouds, and Satellite imagery. The dataset for training the NeRF models and testing

their performance was collected in Riyadh, Saudi Arabia.
We restrict the ROI as a mosque in Riyadh.

The pinhole camera images and LiDAR point clouds
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were recorded together with latitude, longitude, and alti-
tude coordinates via GPS. The dimensions of each camera
image are 2048 x 2448 pixels, and a total of 157 images
are used in the dataset. We transform the camera poses
and LiDAR point clouds into UTM coordinates and alti-
tude, and the camera intrinsic parameters are estimated us-
ing COLMAP [15]. The pose values measured by GPS
are used to provide camera extrinsics in place of the val-
ues estimated with structure-from-motion due to their su-
perior accuracy. We then undistort the raw camera images
using the estimated intrinsic camera parameters. Further-
more, LiDAR point clouds captured within 0.5 seconds be-
fore or after each camera image are projected to generate
depth image as shown in Fig 3 (a). Note that the LIDAR
point clouds only covers a small part of the scene due to the
displacement between the LiDAR and the camera.

Besides ground-based data, a total of six satellite images
captured over the span of six months are used as part of the
dataset, as illustrated in Fig 3 (b). The RPCs of each im-
ages are optimized through bundle adjustment as described
in Section 3. We manually calibrate the UTM coordinate
offset of the rays from the satellite imagery to account for
the coordinate discrepancy between the ground data and the
satellite imagery.

4.2. Setup and Training Details

In this experiment, we compare (depth-)nerfacto models
trained with multiple sources of data. The models are as
follows: Sat., RGB, RGB + Depth, RGB + Depth + Sat.,
and RGB + Depth + Sat.-150k. 'RGB’, "Depth’, and ’Sat.’
indicate the use of RGB camera images, LiDAR depth, and
satellite imagery as training data for NeRF, respectively.

All models are trained for 100k iterations except for
"RGB + Depth + Sat.-150k’, which is trained for 150k it-
erations. For the 'RGB + Depth + Sat’ model, half of
the rays are sampled from satellite imagery during train-
ing, whereas in 'RGB + Depth + Sat.-150k’, 34% of rays
are sampled from satellite imagery. The purpose of 'RGB
+ Depth + Sat.-150k’ is to provide a fair comparison with
models trained solely on ground data. Specifically, the to-
tal number of rays sampled from ground data in 'RGB +
Depth + Sat.” is half of that sampled in 'RGB’ and 'RGB
+ Depth’. For every model, the number of rays per batch
is 2048, and the learning rate for each NeRF field starts at
10~2 and exponentially decreases to 10~

We compare the rendering performance of each model
from two perspectives: (1) how well each model repre-
sents the scene from the ground view, and (2) how well
each model represents the scene from the rooftop view. For
the ground view, we select eight held-out ground RGB im-
ages for evaluation and generate a mask for each image to
only evaluate the rendering and estimated depth of the main
building of interest in the region. For the rooftop view,

(a) Ground Truth (b) RGB

(d) Sat (e) RDS

(f) RDS-150k

Figure 5. Test Image and the NeRF-rendered images generated
from models trained on different combinations of data. Note that
no masking is applied (d) for better visualization. For conciseness,
we abbreviate 'RGB + Depth + Sat” and 'RGB + Depth + Sat.-
150k’ in (e) and (f) to 'RDS’ and 'RDS-150k,” respectively.

we conduct only a qualitative study by comparing the ren-
dered rooftop scene of each model due to limitations in the
amount of available data.

4.3. Results on Ground View

Fig. 5 (d) and Fig. 6 (a) show one of the ground truth
images alongside the rendered images generated by each
NeRF model. It can be observed that *Sat.” fails to ren-
der the scene accurately from the ground-based pespective.
This may be because the rays from the satellite images have
small parallax, which makes the positions of ray intersec-
tions highly sensitive to small perturbations in ray direc-
tions and due to the small data coverage for the side of the
building.

The other models render the scene mostly correctly.
However, a discrepancy in camera pose between the ground
truth and the rendered images is observed, particularly
through the unexpected inclusion of the sky within the
mask. This indicates that the ground truth camera pose,
which was measured via GPS, is not entirely accurate.
Therefore, it is important to note that this discrepancy may
introduce additional error into the quantitative results.

Table 1 presents quantitative results for image quality
and depth estimation. ’Sat.” is excluded from quantitative
comparison due to its explicitly poor scene reconstruction
performance. PSNR and SSIM are computed excluding the
masked pixels, whereas LPIPS is computed including the
masked pixels.

In terms of image quality, all the metrics for each method
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Table 1. Mean and standard deviation of metrics used to evaluate image quality and depth. Standard deviations are presented in parentheses.
Bold values indicate the best performance.

| PSNRT | SSIMt | LPIPS| | MAE/(m) | RMSE | (m)

RGB 20.16 (2.29) | 0.804 (0.057) | 0.123 (0.067) | 2.268 (0.650) | 2.980 (0.610)

RGB + Depth 20.41 (2.28) | 0.806 (0.061) | 0.122 (0.068) | 2.156 (0.632) | 2.880 (0.578)

RGB + Depth + Sat. 20.17 (2.14) | 0.801 (0.064) | 0.127 (0.068) | 2.386 (0.608) | 3.121 (0.604)
RGB + Depth + Sat.-150k | 20.25 (2.23) | 0.796 (0.066) | 0.125 (0.067) | 2.336 (0.611) | 3.062 (0.607)

(a) Oblique view

(b) Side view (c) Top view

Figure 6. NeRF-rendered images trained only with satellite im-
agery.

are very similar, although 'RGB + Depth’ shows slightly
better performance. The slight quality reductions observed
in 'RGB + Depth + Sat.” and 'RGB + Depth + Sat.-150k’
compared to 'RGB + Depth’ can be attributed to biases
in the available evaluation data. First, the evaluation met-
rics are computed only on side views, while the model is
required to also reconstruct rooftop views. This division
of the model’s capacity between two tasks may reduce its
performance on the evaluated task. Second, by including
satellite images as part of the training data, the appearance
embedding could enhance the NeRF model’s generalizabil-
ity to time-variant factors, such as multi-date imagery and
varying lighting conditions. However, since all test images
were ground images captured at the same time, this may
create an unfair comparison for NeRF models trained with
satellite imagery.

With respect to depth estimation, we compute the mean
absolute error (MAE) and root mean square error (RMSE).
The depth estimation performance of each method is similar
to that of ’'RGB’ alone. The potential reasons for this are as
follows: (1) The point clouds do not sufficiently cover the
ROI, as shown in Fig 5 (a). (2) The pose discrepancy men-
tioned in the previous paragraph affects the accuracy of the
estimation. Although extremely large depth errors were re-
moved to account for this factor and other potential outliers,
it is not guaranteed that they have been fully eliminated.

The experiments demonstrate that including satellite im-
ages along with other ground data in the training process
does not significantly degrade the image rendering quality
for ground views, though a finer characterization requires
further studies with improved data sources.

4.4. Results on Rooftop View

Fig. 6 shows the rendered images of the building of in-
terest for the *Sat.” model. This figure demonstrates that
our model training with satellite images alone is unable to
represent side views of the building, but is able to capture
its top views with some fidelity. Despite capturing the over-
all structure of the mosque, certain features, particularly the
spires or minarets, were not well represented.

A comparison of side and top views for other variants of
the method can be seen in Fig. 4. 'RGB + Depth + Sat.
and 'RGB + Depth + Sat.-150k” were able to improve the
aforementioned issues with the satellite-only model. It is
also notable that the addition of ground data led to rooftop
rendering at a more accurate altitude, similarly to what was
observed in ground views in Subsection 4.3

When viewed against ground-only models (RGB’ and
"RGB + Depth’), 'RGB + Depth + Sat.” and 'RGB + Depth
+ Sat.-150k’ were able to more successfully render rooftop
views, since the former lacked data from this perspective.
Besides geometrical differences, blue artifacts from the sky
and other high-frequency color artifacts were more present
in the models trained only with ground data and can be at-
tributed to the same cause.

In summary, this qualitative study showed that mod-
els combining ground and satellite images displayed im-
proved results on different aspects than either ground-only
or satellite-only models. When also considering the analy-
sis from Subsection 4.3, we can conclude that these benefits
in rooftop representation can be obtained at only a small
degradation in quality for grounds views.

5. Conclusion

In this paper, we introduced CaLiSa-NeRF, a novel
framework that integrates ground RGB images, LiDAR
point clouds, and satellite imagery to represent urban en-
vironments. By combining these data types, CaLiSa-NeRF
enables a more comprehensive omnidirectional scene rep-
resentation that effectively both side and top views. Its re-
sults are on par or superior to variants restricted to either
ground or satellite data, thus showcasing the benefits of the
proposed approach. Particularly, improvements were more
substantial on areas where a singular source of data lacked
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visibility (e.g., ground-based sensors being unable to view
rooftops) or had other inherent limitations (e.g., the parallax
for satellite images).

CaLiSa-NeRF shows significant potential for applica-
tions where it’s desired to generate 3D representations that
are accurate from multiple perspectives for large urban
scene in a scalable manner, such as in urban planning,
virtual tourism, or autonomous navigation. In these set-
tings, acquiring aerial data to complement the limitations
of ground data can pose practical and financial barriers, so
the usage of satellite imagery as an alternative is an enticing
possibility. Future work may address some accuracy limi-
tations of the dataset and expand results to city-level scene
representations, as is done in Block-NeRF [16].

References

[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5470-5479, June 2022. 1, 3
Alexandra Carlson, Manikandasriram S. Ramanagopal,
Nathan Tseng, Matthew Johnson-Roberson, Ram Vasude-
van, and Katherine A. Skinner. Cloner: Camera-lidar fu-
sion for occupancy grid-aided neural representations. /EEE
Robotics and Automation Letters, 8(5):2812-2819, 2023. 1,
3

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised nerf: Fewer views and faster train-
ing for free. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
12882-12891, June 2022. 1, 2, 4

Dawa Derksen and Dario Izzo. Shadow neural radiance
fields for multi-view satellite photogrammetry. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pages 1152-1161,
June 2021. 1, 3

Gabriele Facciolo, Carlo De Franchis, and Enric Meinhardt.
MGM: A Significantly More Global Matching for Stereovi-
sion. In BMVA Press, editor, BMVC 2015, Swansea, United
Kingdom, 2015. 1

Shengyu Huang, Zan Gojcic, Zian Wang, Francis Williams,
Yoni Kasten, Sanja Fidler, Konrad Schindler, and Or Litany.
Neural lidar fields for novel view synthesis. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 1823618246, October 2023. 3

Roger Mari, Gabriele Facciolo, and Thibaud Ehret. Sat-nerf:
Learning multi-view satellite photogrammetry with transient
objects and shadow modeling using rpc cameras. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pages 1311-1321,
June 2022. 1, 3

Roger Mari, Gabriele Facciolo, and Thibaud Ehret. Multi-
date earth observation nerf: The detail is in the shadows.
In Proceedings of the IEEE/CVF Conference on Computer

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9

—

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

449

Vision and Pattern Recognition (CVPR) Workshops, pages
2034-2044, June 2023. 1, 3, 4

Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7210-7219, June 2021. 1, 3

Roger Mari, Carlo de Franchis, Enric Meinhardt-Llopis,
Jérémy Anger, and Gabriele Facciolo. A Generic Bundle Ad-
justment Methodology for Indirect RPC Model Refinement
of Satellite Imagery. Image Processing On Line, 11:344—
373, 2021. https://doi.org/10.5201/ipol.
2021.352. 4

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, Computer Vision — ECCV 2020,
pages 405—421, Cham, 2020. Springer International Publish-
ing. 1,2

Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1-
102:15, July 2022. 1

Konstantinos Rematas, Andrew Liu, Pratul P. Srini-
vasan, Jonathan T. Barron, Andrea Tagliasacchi, Thomas
Funkhouser, and Vittorio Ferrari. Urban radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 12932-12942,
June 2022. 1,3

Barbara Roessle, Jonathan T. Barron, Ben Mildenhall,
Pratul P. Srinivasan, and Matthias Niener. Dense depth pri-
ors for neural radiance fields from sparse input views. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 12892-12901,
June 2022. 1,2

Johannes Lutz Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 4, 6
Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek
Pradhan, Ben Mildenhall, Pratul P. Srinivasan, Jonathan T.
Barron, and Henrik Kretzschmar. Block-nerf: Scalable
large scene neural view synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8248-8258, June 2022. 1, 3, 8
Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In ACM
SIGGRAPH 2023 Conference Proceedings, SIGGRAPH
’23,2023. 4

Haithem Turki, Deva Ramanan, and Mahadev Satya-
narayanan. Mega-nerf: Scalable construction of large-
scale nerfs for virtual fly-throughs. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 12922-12931, June 2022. 1, 3


https://doi.org/10.5201/ipol.2021.352
https://doi.org/10.5201/ipol.2021.352

[19]

[20]

[21]

(22]

(23]

Haithem Turki, Jason Y Zhang, Francesco Ferroni, and Deva
Ramanan. Suds: Scalable urban dynamic scenes. In Com-
puter Vision and Pattern Recognition (CVPR), 2023. 1, 3
Peng Wang, Yuan Liu, Zhaoxi Chen, Lingjie Liu, Ziwei Liu,
Taku Komura, Christian Theobalt, and Wenping Wang. F2-
nerf: Fast neural radiance field training with free camera
trajectories. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
41504159, June 2023. 3

Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,
Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.
Bungeenerf: Progressive neural radiance field for extreme
multi-scale scene rendering. In European conference on
computer vision, pages 106-122. Springer, 2022. 3
Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf:
Point-based neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5438-5448, June 2022. 2

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields, 2020. 3

450



	. Introduction
	. Related Work
	. Neural Radiance Fields
	. Depth Priors and LiDAR Integration in Neural Radiance Fields
	. Neural Radiance Fields for Large Scale Outdoor Environment

	. Method
	. Data processing
	. RPC ray casting
	. Network Architecture and Loss

	. Experiment
	. Dataset
	. Setup and Training Details
	. Results on Ground View
	. Results on Rooftop View

	. Conclusion

