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Abstract

Precipitation downscaling, which enhances the spatial
resolution of gridded precipitation data, remains a criti-
cal challenge in climate modeling and hydrological appli-
cations. While Vision Transformers (ViTs) have demon-
strated remarkable success in various computer vision
tasks through their ability to capture long-range depen-
dencies, their application to precipitation downscaling re-
mains largely unexplored due to computational constraints
and the challenge of effectively modeling both local and
global precipitation patterns. This paper introduces Pre-
cipFormer, a computationally efficient transformer archi-
tecture specifically designed for precipitation downscaling.
Our model builds upon the Low-to-High Multi-Level Vision
Transformer (LMLT) mechanism, enabling parallel pro-
cessing of features at multiple spatial scales while signifi-
cantly reducing computational overhead. We enhance the
architecture with a Convolutional Block Attention Module
(CBAM) in the shallow feature extractor to adaptively focus
on critical spatial regions. Through extensive experiments,
we demonstrate that the proposed PrecipFormer achieves
superior performance compared to state-of-the-art base-
lines.

1. Introduction
Precipitation downscaling is a critical component in cli-

mate studies and weather forecasting, enabling the trans-
lation of coarse-resolution climate data into finer spa-
tial scales necessary for localized impact assessments and
decision-making [1]. Accurate downscaling improves the
resolution of precipitation estimates, which is essential for
applications such as flood prediction, agricultural planning,
and infrastructure development [17]. However, precipita-
tion downscaling poses significant challenges due to the in-
herently sporadic and highly localized nature of precipita-
tion events, which are often unexpected and vary both spa-
tially and temporally [3]. Statistical and dynamical down-
scaling approaches have been utilized to address these con-

Figure 1. Visualization of input-output pairs from the RainNet
dataset. Each pair shows a low-resolution input (12km) and its cor-
responding high-resolution ground truth (4km) precipitation map,
demonstrating the significant detail captured at higher spatial res-
olutions.

cerns. A regional climate model incorporates detailed ter-
rain and land cover information in the dynamical down-
scaling approach. The high computational cost limits its
application to a limited region of interest [19]. Although
computationally less expensive, the statistical downscaling
approach [9] has a limitation in that the empirical relation-
ships between the coarse-scale and fine-scale climate vari-
ables are assumed to hold under future scenarios. In recent
years, deep learning techniques, particularly convolutional
neural networks (CNNs), have shown promise in address-
ing these challenges by effectively modeling spatial depen-
dencies and capturing non-linearities in high-dimensional
data [6]. Attention mechanisms have further advanced the
capabilities of deep learning models by enabling the selec-
tive focus on relevant spatial features, thus improving the
performance of various computer vision tasks. The convo-
lutional block attention module (CBAM) [22] is one such
mechanism that integrates channel and spatial attention to
enhance feature representation in CNNs. While CBAM
has demonstrated effectiveness in improving model perfor-
mance, it still inherits the computational burdens associated
with convolutional operations, which can be prohibitive for
large-scale climate datasets. Vision transformers (ViTs) [7]
has emerged as a powerful alternative to CNNs, leverag-
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ing self-attention mechanisms to model long-range depen-
dencies and capture global context within images. Unlike
CNNs, which rely on local receptive fields, ViTs partition
images into non-overlapping patches and apply transformer
architectures to process these patches, enabling more ef-
ficient and scalable spatial feature extraction [7]. Recent
studies have successfully applied ViTs to various remote
sensing tasks [15], including land cover classification and
object detection [23], showcasing their versatility and su-
perior performance compared to traditional CNN-based ap-
proaches. Despite the advancements brought by ViTs, their
application to precipitation downscaling remains largely
under-explored. Existing studies primarily focus on land
cover and general weather prediction, with limited attention
to the unique challenges posed by precipitation events. Pre-
cipitation events are characterized by their unexpected onset
and highly localized distribution, necessitating models that
can dynamically adapt to varying spatial scales and tempo-
ral patterns [3].

This gap highlights the need for specialized attention
mechanisms that can efficiently capture the localized and
transient nature of precipitation data. Most existing deep
learning approaches for precipitation downscaling rely on
synthetically generated training pairs, where low-resolution
data is created by applying predefined downsampling oper-
ations (e.g., bicubic interpolation, Gaussian smoothing) to
high-resolution observations [8]. Although this approach
simplifies data collection, it does not effectively capture the
realistic noise patterns and complex relationships found in
actual multi-scale precipitation measurements. As a result,
models may perform well on artificially downsampled data
but struggle when applied to real-world scenarios. To ad-
dress this limitation, Chen et al. [4] introduced the Rain-
Net dataset, a large-scale and annotated dataset for pre-
cipitation downscaling. RainNet provides realistic simula-
tions of both low and high-resolution precipitation maps in
a geographical region that experiences moderate to heavy
rainfall. Figure 1 shows a few samples from the RainNet
dataset, depicting details preserved in high-resolution sam-
ples as compared to low-resolution samples, and localized,
complex patterns of precipitation in high-resolution maps.

We introduce PrecipFormer, a novel approach that lever-
ages self-attention-based spatial mechanisms from vision
transformers to enhance precipitation downscaling. Our
method addresses the computational inefficiencies of tradi-
tional attention modules by implementing a window-based
self-attention mechanism, inspired by the ViT architecture,
which reduces the computational burden while maintaining
high accuracy in capturing localized precipitation events.
We hypothesize that efficient spatial attention mechanisms
can significantly improve downscaling outcomes by bet-
ter modeling the spatial dependencies and unexpected na-
ture of precipitation phenomena. More importantly, we

also leverage the RainNet dataset [4], enabling the devel-
opment and evaluation of more robust downscaling models.
To validate our hypothesis, we conduct comprehensive ex-
periments comparing PrecipFormer with several baseline
models, including those enhanced with the CBAM attention
module. Our results demonstrate that PrecipFormer consis-
tently outperforms these baselines, achieving superior ac-
curacy in downscaling “real world” precipitation data. Fur-
thermore, our approach exhibits enhanced computational
efficiency, making it suitable for large-scale climate appli-
cations. The primary contributions of our work are:

• We propose PrecipFormer, a computationally efficient
transformer-based architecture for precipitation down-
scaling that integrates LMLT’s parallel multi-scale
processing [10] with CBAM enhancement. Unlike
previous approaches that focus solely on performance,
our model achieves competitive accuracy while signif-
icantly reducing computational requirements.

• Extensive experiments are conducted on the Rain-
Net dataset, which provides realistic pairs of low-
resolution (12km) and high-resolution (4km) precipi-
tation maps, rather than relying on synthetic downsam-
pling techniques commonly used in previous studies.
This ensures our evaluation better reflects real-world
application scenarios.

• Through comprehensive ablation studies and compu-
tational analysis, we provide detailed insights into
the effectiveness of different architectural components
and their impact on both performance and efficiency.
The analysis demonstrates that PrecipFormer achieves
up to 77.8% reduction in FLOPs while maintaining
competitive performance compared to state-of-the-art
(SOTA) models.

The remainder of this paper is structured as follows:
Section 2 reviews related work on precipitation downscal-
ing, attention mechanisms, and Vision Transformers. Sec-
tion 3 details the methodology of the proposed Precip-
Former, including the architecture and implementation of
the window-based self-attention mechanism [24]. Section 4
first presents the description of the dataset used, evaluation
metrics, and baseline models used to assess the model per-
formance. In the end, a comprehensive discussion of the re-
sults is given, highlighting the superiority of PrecipFormer
over baseline models. Finally, Section 5 concludes the pa-
per and outlines potential directions for future research.

2. Related Works
Recent advances in deep learning have revolutionized

both image super-resolution and precipitation downscal-
ing. While these fields have evolved independently, they
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share common challenges in reconstructing high-resolution
outputs while preserving structural details. Understanding
these parallel developments provides a crucial context for
our work. We first review key developments in image super-
resolution that inform our architectural choices, followed by
their specific applications to precipitation downscaling.

2.1. Generic Image Super-Resolution Algorithms

The application of deep learning to image super-
resolution (SR) has evolved significantly since the seminal
work SRCNN [6], which first demonstrated the potential of
CNNs for learning end-to-end mappings between low and
high-resolution images. Subsequent advancements brought
architectural innovations, notably SRGAN [12], which in-
troduced adversarial training and perceptual loss to gener-
ate more realistic high-resolution images. This approach
marked a significant shift from purely reconstruction-based
objectives to perceptual quality enhancement.

The emergence of Vision Transformers (ViTs) [7]
has further advanced the field of image super-resolution.
SwinIR [14] effectively adapted the hierarchical Swin trans-
former architecture for SR tasks, leveraging its ability to
model long-range dependencies through shifted window-
based self-attention. While transformers excel at capturing
global context due to their larger receptive fields, they often
struggle with fine-grained local feature extraction and incur
significant computational overhead. To address these limi-
tations, low-to-high multi-level vision transformer (LMLT)
[10] introduced an innovative approach that processes fea-
tures at multiple scales in parallel through separate attention
heads. This parallel multi-scale processing enables efficient
capture of both local details and global context while sig-
nificantly reducing computational requirements compared
to sequential transformer blocks. Each head operates at a
different spatial scale, with progressive feature integration
from lower to higher resolutions, effectively balancing the
model’s ability to capture both fine details and long-range
dependencies.

2.2. Image Super-Resolution Algorithms in Precip-
itation Downscaling

The success of SRCNN inspired its adaptation to climate
science through DeepSD [20], which pioneered the applica-
tion of deep learning to precipitation downscaling. DeepSD
demonstrated significant improvements over traditional sta-
tistical and dynamical downscaling methods, establishing
the potential of deep learning approaches for this domain.
Building on this foundation, more sophisticated architec-
tures are adapted for precipitation downscaling, with Super
Resolution Deep Residual Network (SRDRN) [21] showing
particularly strong performance due to its ability to learn
complex spatial transformations through residual learning.
The incorporation of generative modeling further advanced

the field, with Kumar et al. [11] applying SRGAN to precip-
itation downscaling, enabling better preservation of extreme
weather patterns and spatial coherence. Subsequently, at-
tention mechanisms are integrated into downscaling mod-
els, Chiang et al. [5] incorporating CBAM to enhance the
model’s ability to focus on relevant spatial regions, given
the localized nature of precipitation patterns.

Recent advances in computer vision have brought new
possibilities to precipitation downscaling. Diffusion mod-
els, which have shown remarkable success in image genera-
tion, have been adapted for precipitation downscaling [18],
offering improved uncertainty quantification and physical
consistency. While vision transformers have demonstrated
impressive results in various remote sensing tasks [15], their
application to precipitation downscaling remains relatively
unexplored, despite their potential for capturing long-range
dependencies crucial for atmospheric processes. These ap-
proaches have highlighted key challenges specific to precip-
itation downscaling, including the need to preserve physical
constraints, handle extreme events, and capture multi-scale
atmospheric phenomena. This has led to an increasing fo-
cus on developing architectures that can effectively balance
computational efficiency with the ability to model complex
spatial patterns across different scales.

3. Proposed Precipitation Downscaling Algo-
rithm

Precipitation downscaling presents unique challenges
that require carefully designed architectural choices. Tra-
ditional transformer architectures, while powerful, often
struggle with computational efficiency and with the preser-
vation of fine-grained precipitation patterns. Our proposed
PrecipFormer addresses these challenges through three key
innovations: efficient multi-scale feature processing, en-
hanced spatial attention, and optimized high-resolution re-
construction. In this section, we detail these components
and their integration into a cohesive architecture, followed
by our implementation details of the proposed architecture.

3.1. PrecipFormer

Our proposed PrecipFormer architecture builds upon
SwinIR [14] and integrates the multi-level transformer con-
cept from LMLT [10] for efficient precipitation downscal-
ing. As shown in Figure 2, the model has three main
components: (a) shallow feature extraction enhanced with
CBAM, (b) deep feature extraction utilizing parallel multi-
level transformer blocks, and (c) high-resolution recon-
struction. Given a low-resolution precipitation map x, our
goal is to generate a super-resolved precipitation map ŷ with
upscaling factor s (for our experiments s=3) while main-
taining computational efficiency.

Shallow Feature Extraction: The shallow feature ex-
traction module begins with a 3 × 3 convolutional layer to
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Figure 2. PrecipFormer architecture overview. (a) Shallow feature extraction with CBAM enhancement for initial feature refinement.
(b) Deep feature extraction with multiple Multi-Level Attention Blocks, each containing parallel multi-scale self-attention processing.
(c) High-resolution reconstruction module using pixel shuffle upsampling. Self-Attention Layer (SAL) operating on non-overlapping
windows. CCM: 1× 1 channel-wise convolution for feature dimension adjustment. DS/US: Downsample/Upsample operations for multi-
scale processing.

extract initial features from the input precipitation map. Un-
like SwinIR, we enhance this stage by incorporating CBAM
[22] after the convolutional layer. The CBAM module se-
quentially applies channel and spatial attention mechanisms
to adaptively refine features. This enhancement is particu-
larly beneficial for precipitation downscaling, as it helps
the model focus on relevant spatial regions given the sparse
and localized nature of precipitation patterns. The channel
attention emphasizes informative features along the channel
dimension, while spatial attention helps identify regions of
significant precipitation activity.

Deep Feature Extraction: The deep feature extraction
module contains multiple sequential blocks similar to [14],
which we refer to as multi-level attention blocks (MLAB).
Within each block, we replace sequential attention calcula-
tion with parallel multi-level transformer architecture. In-
side one such block, the input features first undergo layer
normalization (LN) [13] and are then divided into H heads
(H = 4 in our implementation), the division is done
using channel-wise split, with each head processing fea-
tures at progressively reduced spatial scales. The first head
maintains the original spatial dimensions, while subsequent
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heads process features at 1/2, 1/4, and 1/8 of the original
resolution through average pooling operations. A residual
connection is employed around each self-attention block,
followed by a channel-wise 1 × 1 convolution for feature
dimension adjustment.

A key innovation we leverage from [10] is the progres-
sive integration of features from lower-resolution heads to
higher-resolution heads. Features from lower-resolution
heads are upsampled through bilinear interpolation and in-
tegrated with higher-resolution features through element-
wise addition. Each integration path includes a residual
connection to maintain gradient flow. The final features
from all heads are concatenated along the channel dimen-
sion and processed through a 1 × 1 convolution to adjust
the channel dimension. This multi-scale processing ef-
fectively captures precipitation patterns at different scales
while maintaining computational efficiency.

High-Resolution Reconstruction: The high-resolution
reconstruction stage processes the concatenated multi-scale
features through a 3 × 3 convolutional layer followed by
pixel shuffle [16] upsampling to achieve the target reso-
lution. The use of pixel-shuffle upsampling helps avoid
checkerboard artifacts that can occur with transposed con-
volution operations.

Training Objective Following recent advances in
transformer-based super-resolution networks, we employ
the Charbonnier loss [2] for training:

L(ŷ, y) =
√
∥ŷ − y∥2 + ϵ2 (1)

where ϵ is set to 1e−3. The Charbonnier loss, a differen-
tiable variant of L1 loss, offers better stability in handling
outliers during training. This is particularly important for
precipitation downscaling, where accurate reconstruction of
extreme precipitation events is crucial.

3.2. Implementation Details

We implement PrecipFormer in PyTorch and train it us-
ing the Adam optimizer with an initial learning rate of 1e−4.
The learning rate is adjusted using a cosine annealing sched-
uler to ensure stable convergence. The model is trained with
a batch size of 16, which we assert provides realistic pairs of
low-resolution (12km) and high-resolution (4km) precipita-
tion maps, i.e., the upscaling factor s is 3. All experiments
are conducted on a single NVIDIA RTX A6000 GPU.

4. Results and Analysis

Evaluating precipitation downscaling models requires
careful consideration of both quantitative metrics and qual-
itative analysis, as different metrics capture distinct aspects
of model performance. We first provide a detailed de-
scription of the dataset and associated protocol used in this

study, followed by the description of metrics used to mea-
sure the performance of the proposed and baseline models.
Later, detailed performance comparisons and ablation stud-
ies have been presented. We conclude with an analysis of
computational efficiency, demonstrating how PrecipFormer
achieves state-of-the-art performance while significantly re-
ducing computational requirements.

4.1. Dataset

The RainNet dataset [4] is a comprehensive resource, of-
fering around 62, 500 image pairs representing rainfall data
at 4 km and 12 km spatial resolutions, with an hourly tem-
poral resolution. The RainNet dataset is especially valuable
for downscaling tasks, where the objective is to transform
coarse-resolution data (such as 12 km images) into high-
resolution data (such as 4 km images). This process, known
as downscaling, is crucial in climate and weather prediction,
as it allows for more detailed and accurate forecasting.

For the aforementioned dataset, we took the sub-crops
of each image to 128 × 128 pixels for low resolution (LR)
(which covers approximately 2,633,565 km sq. area) and
384× 384 for high resolution (HR) (which covers approxi-
mately the same area) on the south-western part of the east-
ern coast of the US. i.e approximately latitude: from 25°N
to 41°N and longitude: from 105°W to 89°W for the rainy
season months i.e July through November. As a part of the
training strategy, we apply temporal split to data for train-
ing, testing, and validation. We used the 70% for training,
and the 15% each for validation and evaluation of the pro-
posed and existing models.

4.2. State-of-the-art Baseline Models

To evaluate the effectiveness of our proposed Pre-
cipFormer, we compare it against three representative
super-resolution models that span different architectural
paradigms. SRCNN [6] is one of the pioneering CNN-
based super-resolution models that demonstrates the poten-
tial of deep learning for super-resolution tasks. The model
employs three convolutional layers that simulate the sparse-
coding-based super-resolution pipeline: patch extraction,
non-linear mapping, and reconstruction. Despite its sim-
ple architecture, SRCNN established important baselines
for learning-based super-resolution approaches. SRRes-
Net [12] leverages multiple residual blocks with skip con-
nections, enabling the training of deeper networks while
maintaining stable gradient flow. The residual architec-
ture allows the model to learn residual information between
low and high-resolution images more effectively than se-
quential CNN architectures. SwinIR [14] represents the
state-of-the-art in transformer-based super-resolution. It
employs a hierarchical Swin Transformer as its backbone,
which computes self-attention within shifted windows to re-
duce computational complexity while maintaining the abil-
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ity to model long-range dependencies. The model demon-
strates the potential of transformer architectures in captur-
ing global context for super-resolution tasks. We implement
all baseline models following their original architectures but
train them specifically for precipitation downscaling on the
RainNet dataset. This ensures a fair comparison while eval-
uating their effectiveness in capturing the unique character-
istics of precipitation patterns. For consistent evaluation, all
models are trained with the same batch size, optimization
strategy, and number of epochs as our proposed model.

4.3. Evaluation Metrics

The performance of the proposed and existing algo-
rithms are evaluated using multiple metrics, which are de-
scribed below:

• The mean absolute error (MAE) measures the aver-
age magnitude of errors between predicted and ground
truth precipitation values:

MAE =
1

n

n∑
i=1

|yi − ŷi| (2)

where yi and ŷi are the ground truth and predicted val-
ues respectively.

• The structural similarity index (SSIM) assesses the
perceptual quality of downscaled precipitation maps
by comparing luminance, contrast, and structure:

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3)

where µ and σ represent mean and standard deviation
respectively, and c1, c2 are constants to avoid division
by zero.

• The continuous ranked probability score (CRPS) eval-
uates probabilistic forecasts by measuring the inte-
grated squared difference between the cumulative dis-
tribution functions of predictions and observations:

CRPS =

∫ ∞

−∞
(F (y)−H(y − yo))

2dy (4)

where, F(y) is the predicted cumulative distribution
and H is the Heaviside step function centered on the
observation yo.

4.4. Experimental Analysis

As shown in Table 1, PrecipFormer demonstrates consis-
tent improvements across all evaluation metrics. For exam-
ple, the proposed model achieves the lowest MAE of 0.595,
showing substantial improvements of 12.2% and 15.9%

Table 1. Quantitative evaluation on the RainNet test set (9,635
samples). Our PrecipFormer achieves superior performance across
all metrics compared to state-of-the-art methods. The best results
are shown in bold.

Model MAE ↓ SSIM ↑ CRPS ↓
SRCNN 0.678 0.958 0.811
SRResNet 0.708 0.958 0.791
SwinIR 0.611 0.961 0.783
PrecipFormer (Ours) 0.595 0.964 0.772

over SRCNN (0.678) and SRResNet (0.708) respectively.
Compared to the transformer-based SwinIR (0.611), Pre-
cipFormer achieves a modest but meaningful improvement
of 2.6% in MAE, indicating enhanced capability in accurate
precipitation value reconstruction. The trend suggests that
transformer-based architectures, particularly our enhanced
design, are better suited for preserving the spatial patterns
and structural details crucial for precipitation fields. Fur-
thermore, the progressive reduction in CRPS from SRCNN
(0.811) through SRResNet (0.791) and SwinIR (0.783) to
our model (0.772) showcases the evolution of architectures
in handling precipitation predictions.

The consistent performance improvements across all
metrics, though incremental compared to SwinIR, are par-
ticularly noteworthy given our model’s significantly re-
duced computational complexity (as detailed in our effi-
ciency analysis). This demonstrates that PrecipFormer suc-
cessfully achieves its goal of balancing performance and ef-
ficiency through the integration of parallel multi-scale pro-
cessing and CBAM enhancement. Also, from the visual
comparison of these models shown in Figure 3, we can ob-
serve that the CNN-based models, SRCNN, and SRResNet
consistently overestimate the precipitation values compared
to transformer-based models, SwinIR, and PrecipFormer.

4.5. Ablation Studies

To validate the effectiveness of our design choices and
understand the contribution of each key component, we
conduct ablation experiments by creating variants of our
model. Table 2 presents the quantitative results of this study.

Impact of Multi-scale Parallel Attention: To evaluate
the effectiveness of multi-scale feature processing in par-
allel attention layers, we create an ablated version of pre-
cipFormer which processes features at a single scale. The
results show that removing multi-scale processing leads to
slight performance degradation across metrics, with MAE
increasing from 0.595 to 0.614 (3.1% drop) and CRPS in-
creasing from 0.772 to 0.788. The degradation validates
our hypothesis that processing features at multiple scales
help better capture precipitation patterns at different resolu-
tions. The parallel processing of features at multiple scales
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Figure 3. Qualitative comparison of precipitation downscaling results (3× upscaling). From left to right: Low-resolution input, high-
resolution ground truth (GT), SRCNN, SRResNet, SwinIR, and our PrecipFormer, respectively. Two representative samples demonstrate
our method’s ability to better preserve fine precipitation patterns while maintaining structural coherence. Zoom in for better visualization.

Table 2. Ablation study demonstrating the impact of architectural components. The best results are shown in bold.

Model MAE ↓ SSIM ↑ CRPS ↓
SwinIR 0.611 0.961 0.783
SwinIR + Parallel Processing 0.614 0.961 0.788
SwinIR + Parallel Processing + Multiscale 0.607 0.962 0.780
PrecipFormer (Ours) 0.595 0.964 0.772

enables the model to effectively balance local details and
global context.

Effect of CBAM Integration: A separate ablated ver-
sion removes the CBAM module from the shallow fea-
ture extractor, replacing it with conventional convolutional
layers. Interestingly, this modification shows competitive
performance with an MAE of 0.607 and SSIM of 0.962,
demonstrating only marginal degradation compared to the
full model. This suggests that while CBAM provides ben-
efits in feature refinement, the core strength of our archi-
tecture lies in its efficient multi-scale processing capabil-
ity. The relatively small performance gap indicates that the
model’s fundamental architecture is robust even without so-
phisticated attention mechanisms in the shallow features.

Full Model Analysis: Our complete PrecipFormer, in-
corporating both multi-scale parallel attention and CBAM,
achieves the best performance across all metrics. The fi-
nal model shows a 2.6% improvement in MAE over the
baseline SwinIR while maintaining better or comparable
performance in other metrics. Importantly, these improve-
ments are achieved while significantly reducing computa-
tional complexity, as demonstrated in our efficiency analy-
sis.

4.6. Computational Efficiency Analysis

Beyond downscaling performance, we analyze the com-
putational efficiency of our proposed model in terms of pa-
rameter count, inference speed, and floating point opera-
tions (FLOPs). Table 3 presents these metrics for differ-
ent models. PrecipFormer achieves remarkable efficiency
across all computational metrics. With only 237K param-
eters, it is significantly lighter than both SRResNet (972K)
and SwinIR (680K), representing parameter reductions of
75.6% and 65.1%, respectively. This substantial reduc-
tion in model size is achieved while maintaining superior
downscaling performance. In terms of computational com-
plexity, PrecipFormer requires only 59.01G FLOPs for pro-
cessing a batch of 16 samples, which is significantly lower
than SRResNet (266.29G) and SwinIR (177.64G), repre-
senting reductions of 77.8% and 66.8% respectively. No-
tably, while adding parallel processing and multi-scale fea-
tures to SwinIR substantially reduces FLOPs to 69.32G, our
complete PrecipFormer achieves a further modest reduction
to 59.01G through efficient integration of these components
with CBAM.

The FLOPs reduction translates to improved inference
speed, with PrecipFormer processing a batch of 16 sam-
ples in 132.08ms compared to SwinIR’s 294.76ms. In-
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Table 3. Computational efficiency analysis comparing model complexity and runtime performance. Inference speed is measured on an
NVIDIA RTX A6000 GPU with batch size 16, averaged over 100 iterations. PrecipFormer achieves significant reductions in parameters
and FLOPs compared to SRResNet while maintaining superior downscaling performance.

Model # Parameters Inference Speed (ms) FLOPs (G)

SRResNet 972K 97.85 266.29
SwinIR 680K 294.76 177.64
SwinIR + Parallel Processing 282K 281.45 71.78
SwinIR + Parallel Processing + Multiscale 236K 134.70 59.05
PrecipFormer (ours) 237K 132.08 59.01

terestingly, while SRResNet shows competitive inference
speed (97.85ms) despite its high FLOP count, this can be
attributed to its simpler architecture that avoids computa-
tionally intensive operations like layer normalization and
attention calculations. However, this comes at the cost of
a much larger model size and inferior downscaling perfor-
mance. The variants of SwinIR with parallel processing
and multi-scale features show computational metrics close
to our final model, with only marginal differences in pa-
rameters (277K vs 237K) and FLOPs (69.32G vs 59.01G).
However, PrecipFormer achieves significantly better infer-
ence speed (132.08ms vs 288.45ms) through optimized in-
tegration of these components, while maintaining slightly
better performance metrics.

These results demonstrate that while the individual ar-
chitectural components contribute to efficiency gains, their
careful integration in PrecipFormer achieves an optimal bal-
ance between model complexity and downscaling perfor-
mance. This makes our model particularly suitable for real-
world precipitation downscaling applications where compu-
tational resources may be limited.

5. Conclusion

Due to the complex nature of the precipitation data, tradi-
tional computer vision or deep learning-based image super-
resolution techniques fail to enhance it. In response, we
present PrecipFormer, a novel transformer-based architec-
ture that leverages parallel multi-scale attention process-
ing and enhanced feature refinement for efficient precipi-
tation downscaling. Our model achieves competitive per-
formance while significantly reducing computational de-
mands compared to state-of-the-art image enhancement al-
gorithms. Through comprehensive ablation studies, we val-
idated that both multi-scale parallel attention and CBAM
contribute positively to model performance. In the future,
we aim to extend the architecture of PrecipFormer by incor-
porating temporal modeling for sequences of precipitation
maps and exploring multi-variate downscaling to jointly
process related climate variables by leveraging topographi-
cal information.
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