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Abstract

Digital Surface Models (DSMs) are essential for accu-
rately representing Earth’s topography in geospatial analy-
ses. DSMs capture detailed elevations of natural and man-
made features, crucial for applications like urban plan-
ning, vegetation studies, and 3D reconstruction. However,
DSMs derived from stereo satellite imagery often contain
voids or missing data due to occlusions, shadows, and low-
signal areas. Previous studies have primarily focused on
void filling for digital elevation models (DEMs) and Dig-
ital Terrain Models (DTMs), employing methods such as
inverse distance weighting (IDW), kriging, and spline in-
terpolation. While effective for simpler terrains, these ap-
proaches often fail to handle the intricate structures present
in DSMs. To overcome these limitations, we introduce
DFILLED, a guided DSM void filling method that leverages
optical remote sensing images through edge-enhancing dif-
fusion. Dfilled repurposes deep anisotropic diffusion mod-
els, which originally designed for super-resolution tasks,
to inpaint DSMs. Additionally, we utilize Perlin noise to
create inpainting masks that mimic natural void patterns in
DSMs. Experimental evaluations demonstrate that Dfilled
surpasses traditional interpolation methods and deep learn-
ing approaches in DSM void filling tasks. Both quantitative
and qualitative assessments highlight the method’s ability
to manage complex features and deliver accurate, visually
coherent results.

1. Introduction

Digital elevation models (DEMs)—encompassing both
Digital Surface Models (DSMs) and Digital Terrain Mod-
els (DTMs)—are essential tools in geospatial analysis, rep-
resenting the Earth’s topography. DSMs, in particular, in-
clude elevations of natural and man-made features such as
vegetation and buildings, offering more detailed and com-
plex information than DTMs. This richness makes DSMs
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Figure 1. Overview of the proposed guided DSM void filling ap-
proach. The method utilizes a image guidance to fill voids in the
DSM, resulting in a complete and accurate DSM reconstruction.

invaluable for applications requiring fine-scale surface fea-
tures, including urban planning, vegetation analysis, and 3D
reconstruction.

However, DSMs generated from stereo satellite imagery
often suffer from voids or holes (areas with missing ele-
vation data) due to mismatches in occluded, shadowed, or
low-signal regions. These voids degrade the quality and re-
liability of DSMs, impacting critical tasks in photogramme-
try and remote sensing like change detection, object recog-
nition, and 3D modeling. Filling these voids is particularly
challenging in DSMs compared to DTMs because of the ad-
ditional complexity introduced by surface features such as
buildings and trees.

Traditional void filling methods involve interpolation
techniques estimate unknown values using spatially neigh-
boring information [15]. While these methods may be suf-
ficient for small gaps in DTMs, they often struggle with the
complex features present in DSMs, especially when dealing
with large voids or intricate urban landscapes. The reliabil-
ity of these methods diminishes as the void size increases or
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the terrain becomes more complex, leading to inaccurate or
unrealistic surface representations.

To overcome these limitations, researchers have ex-
plored the use of auxiliary data sources, such as integrating
multiple DEMs or utilizing remote sensing imagery. Tech-
niques like fill-and-feather, delta surface fill, and moving
window erosion have been developed to fuse data from var-
ious sources [4, 6]. However, these approaches may falter
in areas with unreliable auxiliary data or fail to capture the
detailed features inherent in DSMs.

The advent of deep learning has opened new avenues
for DEM void filling. Generative Adversarial Networks
(GANs), in particular, have shown promise due to their
ability to generate realistic textures and patterns. Various
GAN-based methods have been proposed, including con-
ditional GANs [2], Wasserstein GANs with contextual at-
tention mechanisms [5], and multi-attention GANs [24].
Some approaches have incorporated topographic features
like slope and relief degree to enhance the training pro-
cess [14]. An alternative strategy is to utilize optical remote
sensing images as auxiliary data for void filling. Remote
sensing imagery provides rich spectral and textural infor-
mation that correlates with the surface features present in
DSMs. For example, buildings, trees, and other structures
visible in optical images correspond to features in DSMs,
offering valuable information for reconstructing missing el-
evation data. Previous work has attempted to incorporate
such imagery by using shadow maps or other features to
guide DEM reconstruction [3]. Nonetheless, these meth-
ods often focus on DTMs or small missing areas and may
not fully leverage the rich feature information inherent in
remote sensing imagery. They may also lack the ability to
preserve the fine-scale details of man-made structures and
vegetation, which are critical in DSM applications.

By utilizing edge-enhancing diffusion techniques, our
proposed method enhances edges with optical image’s guid-
ance (see Fig. 1), which is critical for maintaining structural
integrity in DSMs.

The key contributions of this work are:

1. We introduce a novel approach that adapts deep
anisotropic diffusion models, which originally de-
signed for super-resolution tasks, to the problem of
DSMs void filling. By redefining the problem formula-
tion using the heat equation and modifying the model
to handle localized missing data, including local re-
finement strategies for coarse reconstruction, we ef-
fectively propagate contextual information into voids
while preserving critical structural details.

2. We employ Perlin noise to generate inpainting masks
that simulate the natural void patterns found in DSMs.
This ensures that the model is trained on realistic miss-
ing data scenarios and enhances its ability to generalize

to real DSM voids.

3. We demonstrate the effectiveness of the proposed
method through extensive experiments on various sim-
ulated and real DSM datasets. We propose the use of
Perlin noise also for realistic evaluation. Our approach
outperforms traditional interpolation techniques and
state-of-the-art deep learning methods, particularly in
handling complex features and providing accurate, vi-
sually realistic results in handling both small and large
void filling in DSM.

2. Related Work

Voids in DEMs typically arise from limitations in data
acquisition technologies such as radar or Light Detection
and Ranging (LiDAR). Factors like water bodies, dense
vegetation, low reflectivity surfaces, and complex terrain
can impede the collection of accurate elevation data. For
example, radar-based missions like the Shuttle Radar To-
pography Mission (SRTM) are prone to issues like shadow-
ing and layover in steep or rugged terrains, leading to data
gaps [6]. Additionally, atmospheric conditions and instru-
ment limitations can contribute to missing data in DEMs.
In contrast, voids in DSMs often result from challenges in-
herent in stereo image matching processes used to gener-
ate DSMs from optical imagery. Occlusions caused by tall
structures, shadows cast by buildings or terrain features, and
regions with low texture or homogenous surfaces hinder the
matching algorithms [9]. Urban environments with dense
infrastructure and areas with significant vegetation present
particular difficulties, leading to more frequent and exten-
sive voids in DSMs compared to DTMs.

2.1. Classical Methods for Void Filling

To address the issue of voids in DEMs and DSMs, a va-
riety of traditional methods have been developed. In DEMs,
interpolation techniques such as inverse distance weight-
ing (IDW), kriging, and spline interpolation are commonly
used [15]. These methods estimate missing elevation values
based on the spatial correlation of surrounding data points.
While effective for small voids in relatively flat and homo-
geneous terrains, their accuracy diminishes with increas-
ing void size and terrain complexity. Many methods also
have been proposed to leverage auxiliary data. The Fill and
Feather (FF) [4] technique replaces missing data with val-
ues from an auxiliary DEM and applies smoothing at the
edges to ensure seamless transitions. The Delta Surface Fill
(DSF) [6] method creates a delta surface by computing the
difference between the DEM and a resampled auxiliary sur-
face, which is then used to adjust the fill surface for smooth
integration. These methods rely heavily on the availability
of high-quality auxiliary DEMs.
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Figure 2. Summary of the proposed architecture for DSM void filling. The method comprises a two-step process: First, high-dimensional
features are extracted from both the void-filled DSM and high-resolution optical imagery using a pre-trained feature extractor. Next, a
refinement network integrates residual blocks and upsampling operations to reconstruct missing elevation values. This is followed by an
edge-enhancing diffusion network that iteratively refines the DSM, leveraging edge features from the optical imagery to ensure accurate
and realistic reconstruction of terrain and structural details.

In the context of DSMs, traditional interpolation meth-
ods often struggle due to the complexity introduced by sur-
face features like buildings and vegetation. To overcome
this, Krauß et al. [9] proposed a context-based approach for
filling voids in DSMs generated from dense stereo match-
ing. They categorized voids based on their characteris-
tics and applied tailored strategies for each type, improving
the accuracy of the filling process in complex urban areas.
However, these methods may still be limited by the quality
and availability of auxiliary data.

2.2. Deep Learning-Based Methods

The rise of deep learning has led to the development of
more advanced void filling techniques for DEMs. GANs
have been employed due to their ability to model complex
data distributions and generate realistic outputs. Dong et
al. [2] introduced a conditional GAN for recovering missing
elevation data, demonstrating improved performance over
traditional interpolation methods. Gavriil et al. [5] proposed
a Wasserstein GAN with a contextual attention mechanism
to enhance texture generation in void regions of DEMs.
For DSMs, deep learning-based void filling methods are
less prevalent but have shown potential. The complexity
of DSM data, which includes detailed representations of
surface features, poses significant challenges for modeling.
Existing models often require extensive training data and
may not fully exploit available information, such as high-
resolution optical imagery, to improve void filling. More-
over, deep learning models may struggle to preserve fine-
scale details crucial in DSM applications, such as edges of
buildings and vegetation structures. Further enhancements
have been achieved by integrating attention mechanisms
into a conditional GAN, such as in the context-aware mod-
els proposed by Zhang et al. [22] and Zhou et al. [24], which

leverage multi-attention mechanisms to improve void fill-
ing performance. Additionally, domain-specific constraints
have been introduced to guide restoration. For instance,
Shadow-constrained GAN (SCGAN) incorporates terrain
shadow geometry into its loss function [18], while the Topo-
graphic Knowledge-Constrained GAN (TKCGAN) penal-
izes incorrect valley and ridge predictions [23]. Recently,
Lo et al. [11] proposed a novel approach using a conditional
Denoising Diffusion Probabilistic Model (DDPM) for void
filling in DEMs. The Diff-DEM framework leverages the it-
erative refinement capabilities of DDPMs to generate high-
quality reconstructions. This method represents a shift from
traditional GANs to probabilistic diffusion models, offering
promising results in both accuracy and robustness.

2.3. Use of Guidance in Void Filling Methods

Incorporating guidance from auxiliary data modalities
has proven effective in enhancing void filling techniques.
For DEMs, remote sensing imagery provides valuable con-
textual information that aids in improving reconstruction
quality. Dong et al. [3] utilized shadow maps extracted from
optical images as constraints within a convolutional neural
network, resulting in improved accuracy in void filling for
DEMs. Similarly, Qiu et al. [14] introduced a terrain tex-
ture generation model that integrates topographic features,
such as slope and relief degree, into a GAN framework, en-
hancing the realism of generated terrain in void regions of
DEMs. Building on these advancements, Yue et al. [21]
proposed a terrain feature-guided transfer learning approach
assisted by remote sensing images. This method leverages
terrain features and auxiliary data to guide the generative
process, achieving more accurate and realistic void filling in
DEMs. In the case of DSMs, the use of auxiliary guidance
remains a question. Optical imagery, rich in spectral and
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textural information, could serve as a valuable data source
to capture surface feature details and improve reconstruc-
tion quality in DSM void filling tasks.

3. Methodology

3.1. Repurposing Deep Anisotropic Diffusion for
Inpainting

Deep anisotropic diffusion models have demonstrated
significant success in super-resolution tasks by enhanc-
ing spatial resolution through the reconstruction of high-
frequency details from low-resolution images [12]. These
models utilize anisotropic diffusion processes to propagate
information directionally, effectively enhancing edges and
fine details while mitigating noise and artifacts. Recogniz-
ing their potential in handling structural complexities, we
repurpose deep anisotropic diffusion models for the task of
image inpainting.

In image inpainting, the objective is to fill in missing
or corrupted regions within an image in a manner that is
coherent with the surrounding content. By adapting deep
anisotropic diffusion models, we aim to effectively propa-
gate contextual information from known regions into voids,
resulting in seamless and visually plausible inpainted im-
ages (see Fig. 2).

3.2. Problem Formulation

The inpainting problem can be formulated using the heat
equation, which models the diffusion of heat (or, analo-
gously, information) over time. The classical isotropic heat
equation is given by:

∂u

∂t
= ∇2u, (1)

where u(x, y, t) represents the image intensity at position
(x, y) and time t, and ∇2 is the Laplacian operator.

For image inpainting, we are interested in finding a
steady-state solution (∂u∂t = 0) to the anisotropic diffusion
equation:

∂u

∂t
= ∇ · (D(x, y)∇u), (2)

where D(x, y) is the diffusion tensor that controls the rate
and direction of diffusion at each point in the image. The
diffusion tensor is designed to encourage diffusion along
the edges and inhibit it across edges, preserving important
structural details.

Our goal is to reconstruct the missing regions Ωmissing
in the image u(x, y) such that the inpainted image satisfies
the anisotropic diffusion equation within Ωmissing and agrees
with the known pixel values in the known regions Ωknown:

{
∂u
∂t = ∇ · (D(x, y)∇u), for (x, y) ∈ Ωmissing,

u(x, y) = u0(x, y), for (x, y) ∈ Ωknown,
(3)

where u0(x, y) denotes the known pixel values.
By formulating the problem in terms of the heat equa-

tion, we can employ the deep anisotropic diffusion model
to iteratively solve for u(x, y), effectively diffusing infor-
mation from known regions into the missing areas.

3.3. Proposed Model

To tailor the deep anisotropic diffusion model for in-
painting, we introduce the following key extensions:

3.3.1 Coarse Reconstruction with Local Refinement
Network

The initialization of missing regions significantly impacts
the diffusion performance. Inadequate initialization can
lead to poor convergence or unrealistic artifacts in the final
output [13]. We implement the local refinement network
for coarse reconstruction of the missing regions. This local
refinement provides an informed starting point for the diffu-
sion process, enabling the model to focus on refining details
rather than constructing basic structures from scratch. To
achieve this we implement the same network used in [13]
by removing the residual connection.

3.3.2 Perlin Noise for Mask Generation

An essential aspect of training and evaluating inpainting
models is the design of masks that simulate missing re-
gions [17]. Previous methods often employ masks com-
posed of irregular and rectangular shapes. While effective
for general images, these masks may not accurately repre-
sent the void patterns found in DEMs and DSMs, which
often exhibit natural, continuous missing regions due to oc-
clusions or sensor limitations.

To address this, we utilize Perlin noise to generate masks
that more closely resemble the voids in DEMs and DSMs,
as seen in Fig. 3. Perlin noise is a gradient noise function
producing natural-looking textures with continuous gradi-
ents, widely used in procedural texture generation. Algo-
rithm 1 details the mask generation procedure.

4. Experiments
4.1. Datasets and Implementation

Imagery and Study Area We use DSMs and correspond-
ing RGB orthoimages acquired over Ho Chi Minh City,
Vietnam; Zurich and Bern, Switzerland; and Dushanbe,
Tajikistan, all with a Ground Sampling Distance (GSD) of
0.5m. The DSMs for Ho Chi Minh City and Dushanbe
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(a) Real Voids

(b) LaMa [17] Mask

(c) Perlin Mask

Figure 3. Real and synthetic void masks for DSM void filling.
(a) Real Voids illustrate naturally occurring, complex patterns in
DSMs. (b) LaMa masks are structured synthetic voids often used
in model training but may not accurately reflect real void distri-
butions. (c) Perlin masks, generated with procedural noise, better
mimic the irregularity and complexity of real voids.

Algorithm 1: PERLINMASK

Input: s: image size
Output: mask
Randomly select parameters: scale(sc), octaves(o),

persistence(p), lacunarity(l), base(b)
Initialize an s× s array, noise
for i = 0 to s− 1 do

for j = 0 to s− 1 do
noise[i, j]←

PerlinNoise(i/sc, j/sc, o, p, l, b)

Normalize noise to [0, 1]
threshold← Uniform(0, 1)
Initialize mask as s× s
for i = 0 to s− 1 do

for j = 0 to s− 1 do
mask[i, j]← 1[noise[i, j] > threshold]

return mask

are generated from Pleiades 1B satellite data using a sin-
gle triplet stereo acquisition. The high-resolution DSMs
for Switzerland are LiDAR DSMs provided by The Federal

Office of Topography on the Swisstopo Portal1 and are the
same as those proposed in [13].

The dataset consists of approximately 4000 patches for
training, 400 for validation, and 1300 for testing, each
of size (256 px, 256 px). We use Ho Chi Minh City
and Switzerland data for training and validation, and use
Dushanbe data for testing. The study areas encompass
diverse urban environments, including widely spaced, de-
tached residential buildings, allotments, and high commer-
cial buildings.

Implementation Details We randomly load training
patches during training. We initialize the voids in the DSMs
with the median value of the known regions. We normalize
the data using min-max normalization: for the refinement
network, each DSM is normalized to the range [-1, 1]; for
the diffusion network, DSMs are normalized to the range [0,
1]. Optical images are normalized using ImageNet statis-
tics. In the training data, voids masks are introduced sim-
ilarly to the method presented in [10], generating irregular
mask shapes to simulate voids in the DSMs. The testing
data includes real voids masks and corresponding ground
truth.

In all experiments, we use a hidden feature dimension of
64 for the feature extractor and the refinement decoder. A
ResNet-50 backbone [7] pretrained on ImageNet [1] is used
as the feature extractor. For training, we employ the L1 loss
across all methods, including our own. For the diffusion
network, we adopt the same setup and strategy outlined in
[13]. This adjustment decreases smoothing and makes the
filled DSM more coherent.

We employ the ADAM optimizer [8] with a base learn-
ing rate of 5× 10−5 and no weight decay. The batch size is
set to 8 for training, using an NVIDIA A100 GPU. We stop
training once the root mean square error (RMSE) on the
validation set has converged. Our model is implemented in
PyTorch.

4.2. Baselines

• Spline Interpolation: A traditional interpolation tech-
nique that estimates missing DSMs values by fitting
spline functions to the available data points

• Diff-DEM [11]: An adaptation of the Palette diffusion
model [16] for DSM void filling. The model uses a U-
Net architecture with attention mechanisms in deeper
layers. Inputs are processed as dual-channel 2×128×
128 images, incorporating the DSM containing voids
and the step t approximation of the target DSM.

• RSAGAN [21]: A GAN-based framework, where gen-
erator architecture includes two encoders with gated

1https://www.swisstopo.admin.ch/en/geodata.html
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Figure 4. Visual comparison of void filling results for small masks, where voids cover a relatively small portion of the DSM. The proposed
Dfilled method produces more regularized and smoother results compared to RSAGAN, aligning closely with the ground truth while
preserving fine-scale structural details. Green boxes indicate regions of interest.
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Table 1. Comparison of models on real and synthetic datasets using RMSE, NMAD, and MedAE metrics. The table lists the model
name, whether guide image guidance is incorporated and the training mask used. The performance metrics are evaluated on three different
datasets: Real, Small Synthetic, and Large Synthetic.

Model Image Train Real Small Synthetic Large Synthetic

Guidance Mask RMSE NMAD MedAE RMSE NMAD MedAE RMSE NMAD MedAE

Spline - - 16.69 3.85 16.88 18.80 2.45 18.55 20.56 2.98 18.93

Diff-DEM - LaMa 3.87 0.98 0.67 3.49 0.76 0.54 13.59 5.82 12.89
Perlin 3.02 0.94 0.67 3.50 0.76 0.54 13.20 5.82 12.90

RSAGAN ✓ LaMa 4.25 1.66 1.18 2.37 0.87 0.63 6.60 5.82 3.86
Perlin 3.71 0.83 0.57 1.28 0.27 0.19 3.62 1.57 1.27

Dfilled (Ours) ✓ LaMa 2.91 0.30 0.20 1.14 0.20 0.14 2.49 0.78 0.54
Perlin 3.17 0.49 0.33 1.23 0.20 0.14 2.53 0.97 0.70

convolutions [20] to extract features while considering
void masks. A Pyramid, Cascading, and Deformable
Convolution (PCD) alignment module [19] aligns im-
age and DEM features. To address large-scale voids,
RSAGAN employs the image context attention mod-
ule (ICAM) for preliminary void filling and the terrain
feature-guided residual pixel attention block (TFG-
RPAB) to refine the features by transferring image tex-
tures to topographic attributes.

4.3. Evaluation Metrics

We evaluate the models’ performance by examining
the RMSE, the normalized median absolute deviation
(NMAD), and the median absolute error (MedAE), which
are all derived from per-pixel differences between predic-
tion and ground truth.

5. Results
5.1. Comparisons with Prior Works

Our proposed method, Dfilled, demonstrates superior
performance in filling voids within DSMs, as evidenced
by both quantitative and qualitative results. In Table 1,
we compare four methods, Spline, Diff-DEM, RSAGAN,
and Dfilled, across three different datasets (Real, Small
Synthetic, and Large Synthetic), each trained on LaMa or
Perlin masks. Dfilled obtains significantly lower RMSE,
NMAD, and MedAE values compared to traditional in-
terpolation (Spline) and state-of-the-art learning-based ap-
proaches (RSAGAN and Diff-DEM).

Interestingly, Diff-DEM, a recent single DSM inpainting
approach, outperforms the guided RSAGAN on the Real
dataset. However, Dfilled surpasses both methods across
all three datasets. This underscores the robustness of our
guided approach and its ability to leverage auxiliary in-
formation effectively during void filling. Although many
methods benefit from being trained with our newly intro-
duced Perlin mask, Dfilled achieves strong and consistent

results irrespective of whether the LaMa or Perlin mask is
used in training, illustrating that its performance does not
heavily depend on the specific mask type and can readily
adapt to varying void patterns.

Complementing these quantitative findings, Fig. 4 and
Fig. 5 provide visual comparisons for voids of different
sizes. In scenarios with smaller voids (see Fig. 4), Dfilled
not only reconstructs the missing elevation data more ac-
curately than RSAGAN but also produces smoother, more
regularized outputs, minimizing artifacts and ensuring bet-
ter continuity of terrain and structural details. For larger
voids covering up to 60–80% of the image (Fig. 5), Dfilled
leverages high-resolution guide images to recover com-
plex terrain and fine-scale features effectively. By contrast,
RSAGAN frequently introduces artifacts and struggles to
preserve fine details in both small and large void cases.
Overall, these results highlight Dfilled’s adaptability, ro-
bustness, and ability to consistently produce realistic DSM
reconstructions across a wide range of void sizes, making
it a superior choice for demanding high-resolution applica-
tions.

5.2. Ablation Study

Table 2. Contribution of each component in our network

Refinement Diffusion RMSE [m]

1 ✓ 3.49
2 ✓ 3.69
3 ✓ ✓ 2.91

To assess the contribution of each component in our
model, we conducted an ablation study by systematically
enabling the Refinement and Diffusion modules. As shown
in Tab. 2, using only the Diffusion module (row 1) achieves
an RMSE of 3.49m, while using only the Refinement mod-
ule (row 2) yields 3.69m. Enabling both modules (row 3)
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Input Guide RSAGAN Dfilled Ground Truth

Figure 5. Visual comparison of void filling results for large masks, where 60–80% of the DSM area is void-filled. The Dfilled method
effectively utilizes high-resolution guide images to reconstruct missing elevation data, outperforming RSAGAN in recovering complex
terrain features and structural details.

(a) Only Diffusion (b) Only Refinement

(c) Refinement + Diffusion

Figure 6. Visual comparison of ablation settings. (a) Using only
Diffusion. (b) Using only Refinement. (c) Using both Refinement
and Diffusion. Combining Refinement and Diffusion removes ar-
tifacts and smooths discontinuities.

significantly reduces the RMSE to 2.91m, demonstrating
the complementary nature of these components.

Figure 6 visually highlights the differences. Outputs
with only the Refinement module (b) show noisy, dot-like
artifacts, whereas adding the Diffusion module (c) removes
these artifacts, producing smoother and more consistent re-
sults. This underscores the critical role of the Diffusion
module in enhancing both accuracy and visual quality. Ad-
ditionally, when combining both Refinement and Diffusion
modules the resulted DSM is more regularized than the one
produced without Refinement module (a).

6. Conclusion

In this paper, we introduced a novel approach for void
filling in DSMs by adapting deep anisotropic diffusion
models originally designed for super-resolution tasks. Our
method redefines the problem using the heat equation and
modifies the model to handle localized missing data through
local refinement strategies for void initialization. This en-
ables effective propagation of contextual information into
voids while preserving critical structural details such as
sharp building edges and smooth transitions in natural ter-
rain.

To train our model on realistic missing data scenarios,
we employed Perlin noise to generate inpainting masks that
simulate natural void patterns commonly found in Digital
Surface Models (DSMs). Our method demonstrates robust-
ness against large masks and various types of masks, mak-
ing it effective across diverse landscapes, including com-
plex urban environments. Extensive experiments on both
simulated and real DSM datasets show that our approach
outperforms traditional interpolation techniques and state-
of-the-art deep learning methods. Specifically, our method
excels in handling complex features and provides accurate,
visually realistic results where conventional methods often
fail. By utilizing edge-enhancing diffusion techniques, our
proposed method enhances edge and structural information
critical for maintaining terrain integrity in DSMs.
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