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Abstract

Acquiring and annotating large datasets for the segmen-
tation of outdoor 3D point clouds observed by airborne
light detection and ranging (LiDAR) is resource-intensive
and fraught with privacy concerns, limiting the availabil-
ity of labeled training data. Pre-trained models can help to
some extent but their effectiveness hinges on large datasets,
and self-supervised learning faces data scarcity challenges.
We propose a formula-driven auto-generated terrain and
shape point cloud dataset for 3D point cloud segmentation
tasks. Our synthetic dataset was created from diverse 3D
models with variations in polygon types and shape simi-
larity, and provides a high-quality pre-training alternative
to existing datasets. Experiments reveal that models pre-
trained on our synthetic data outperform those trained from
scratch and rival existing self-supervised learning meth-
ods. Our synthetic data aims to supplement the 3D point
clouds observed by airborne LiDAR segmentation models
and tackle the challenge of limited data availability in this
field.

1. Introduction

Airborne light detection and ranging (LiDAR) is a re-
mote sensing technology that utilizes near-infrared light to
generate precise 3D models of the Earth’s surface. The
datasets acquired by airborne LiDAR sensors are typically
enormous, often containing billions of points. To process a
large number of point clouds, point cloud semantic segmen-
tation (also called point cloud classification) is performed.
Point cloud semantic segmentation involves predicting cat-
egory labels for all points in a given point cloud. This task is
highly challenging as a result of the scattered and irregular
nature of aerial LiDAR data, which consist of huge num-
bers of points. Several architectures [13, 23, 31, 40] have
been implemented to process point cloud data, including
point-based networks, graph-based networks, voxel-based

networks, and multi-view networks. Because LiDAR sen-
sors acquire data in the form of 3D points, our focus is on
exploring the efficacy of point-based networks for this task.
The pioneering work for directly processing point cloud
data was PointNet [40]. Qi et al. [41] extended the capa-
bilities of PointNet by incorporating local geometric infor-
mation through a hierarchical neural network, resulting in
the creation of PointNet++. Inspired by these networks, re-
cent studies [10,57,67] have focused on redefining sampling
and augmenting features using knowledge from other fields
to improve performance. To utilize deep learning methods
effectively, it is necessary to develop annotated datasets ac-
quired by airborne LiDAR sensors. Although automated
labeling is possible for certain elements such as the ground
and planar surfaces like buildings, other objects necessitate
manual annotation as a result of their diverse shapes and rel-
atively low representation, often comprising less than 1% of
the total data points. However, labeling point cloud data re-
quires a substantial amount of time and effort, leading to a
shortage of large, annotated 3D datasets.

To address this issue, we propose the use of self-
supervised learning (SSL) on unlabeled point clouds, draw-
ing inspiration from the success of SSL methods in natu-
ral language processing [16, 17, 43] and computer vision
[9, 18, 21, 32]. This approach aims to obtain meaningful
representations for semantic scene segmentation tasks. This
paper introduces a point cloud pre-training method that au-
tomatically constructs a synthetic point cloud dataset based
on the natural laws governing 3D structures. Specifically,
we apply the concept of formula-driven supervised learning
(FDSL) to 3D vision, generating infinite training data from
a mathematical formula, as proposed by Kataoka et al. for
2D vision [30]. We employ a mathematical formula rooted
in fractal geometry [34], which is highly relevant to both
natural and artificial objects in real-world 3D scenes. An
example of applying a fractal-based training data creation
method to 3D data was proposed by Yamada et al., who
created a dataset by rendering a generated fractal model
into multi-view images [58]. Previous studies in the field
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of medical image processing have demonstrated the effec-
tiveness of FDSL on 3D data for segmentation tasks [50].
Given that fractal geometry possesses two essential prop-
erties, namely self-similarity and non-integer dimensions,
we believe it can be used to generate detailed 3D structures
such as vegetation, which cannot be replicated by simple
computer-aided design (CAD) models. Our proposed syn-
thetic point cloud fractal dataset significantly enhances rep-
resentation learning for semantic segmentation. By lever-
aging fractal geometry, a fundamental aspect of real-world
structures, it is possible to generate 3D models and scenes
that closely resemble natural environments automatically.
This approach eliminates the need for manual labor in con-
structing outdoor point cloud datasets, as it adheres to natu-
ral laws described by mathematical formulations. The main
contributions of this study can be summarized as follows.

• We propose a synthetic fractal dataset automatically
generated using natural 3D terrain and objects with
fractal geometry to simulate the point clouds observed
by airborne LiDAR. This framework notably elimi-
nates the need for data collection and annotation.

• The proposed synthetic fractal dataset facilitates the
acquisition of feature representations for 3D segmen-
tation during the pre-training phase, as shown in
Fig. 1(a).

• By employing a detector pre-trained on the synthetic
fractal dataset, we achieve improved performance on
3D segmentation tasks for representative outdoor point
cloud datasets observed by airborne LiDAR, including
DALES and OpenGF, as illustrated in Fig. 1(b).

(a) Pre-training 3D semantic seg-
mentation for outdoor point cloud
observed by airborne LiDAR with
synthetic fractal dataset

(b) Fine-tuning results for a limited
DALES training data

Figure 1. Pre-training effects on our synthetic fractal dataset as a
family of formula-driven supervised learning. Although the pro-
posed method does not use real data, it is a better pre-training
approach to understand a 3D scene, especially in a limited data
scenario

2. Related Studies

Datasets Current datasets for large-scale point cloud seg-
mentation can be categorized into three main types: indoor,
autonomous driving, and airborne.

Indoor Early datasets in this category such as SUN
RGB-D [48], NYUv2 [47], and S3DIS [3] consist of
RGB-D sequences captured with short-range depth scan-
ners. These datasets feature low resolution and limited se-
mantic annotations. Additional datasets [11, 15, 46] pro-
vide more extensive annotations but their performance on
less common classes is limited by the resolution of the
laser-scanned ground-truth geometry. ARKitScenes [5] and
ScanNet++ [60] address this issue by integrating RGB im-
ages with high-resolution 3D scene geometry captured by
lasers, offering both sparse and dense semantic annotations.

Autonomous driving This category encompasses
datasets tailored for autonomous driving applications,
where data are collected using LiDAR scanners and RGB
cameras mounted on vehicles [6, 7, 12, 37, 39, 45, 49, 51].
These mobile LiDAR datasets, which are characterized by
low-angle viewpoints focused on driving-related segmenta-
tion tasks, often exhibit occlusions in their point clouds such
as missing building rooftops. Although these datasets fulfill
the needs of autonomous driving, they are less suitable for
other domains such as public utility management and urban
planning.

Airborne These datasets are crucial for advancing re-
search and applications in remote sensing, environmental
monitoring, autonomous navigation, public utility manage-
ment, and urban planning. They are primarily collected us-
ing airborne LiDAR [44,53,59,68] or photogrammetry with
SfM/MVS [8, 24, 33]. Unlike DALES [53], the ECLAIR
dataset [35] offers colorized, large-scale point clouds that
include high-resolution 3D geometry with accurate seman-
tic labels and information on the number of LiDAR returns
for each point. Additionally, OpenGF [42] was proposed as
a dataset for evaluating the task of separating ground and
non-ground points, as well as general ground object classi-
fication.

Pre-training Contrastive algorithms pre-train a backbone
network by discerning similarities and differences between
samples. PointContrast [56] is a foundational method in
this area, generating two point clouds from varying perspec-
tives and comparing their point feature similarities for pre-
training. Subsequent studies have enhanced network perfor-
mance by improving data augmentation techniques [55, 65]
and incorporating cross-modal data [1, 26, 63].

Conversely, generative pre-training techniques focus on
reconstructing masked parts of data or their 2D projections
to train an encoder. Approaches such as Point-BERT [61]
and Point-MAE [38] adapt concepts from bidirectional en-
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coder representations from transformers [17] and masked
autoencoders [20] to the context of point cloud data. The
TAP [54] and Ponder [25] models enhance backbone train-
ing by generating 2D projections of point clouds.

Point-M2AE [64] is a hierarchical network designed to
capture geometric and feature information incrementally.
Joint-MAE [19] explores the interplay between 2D images
and 3D point clouds, using hierarchical modules for cross-
modal interactions to reconstruct masked elements in both
modalities.

In contrast to the structural advancements observed in
Point-M2AE and Joint-MAE, our approach focuses on re-
fining the training process. By leveraging the progres-
sive guidance features of conditional diffusion models, our
method enables the backbone to acquire hierarchical geo-
metric priors by denoising point clouds across varying lev-
els of noise.

Formula-driven supervised learning. FDSL approaches
[27, 29, 30, 36] generate extensive datasets using mathe-
matical formulas, thereby eliminating the need for man-
ual image collection and annotation. Research by Kataoka
et al. [30] has demonstrated that a model pre-trained on a
synthetic 2D fractal dataset can achieve performance levels
comparable with those of models pre-trained on ImageNet
for certain image classification tasks.

These approaches are particularly effective because they
leverage pre-training on synthetic images generated from
fractals, thereby eliminating the need for natural images en-
tirely. Our hypothesis is that the effectiveness of this ap-
proach stems from training on fractals, which are prevalent
in nature and represent a wide range of real-world patterns
more comprehensively than datasets such as ImageNet. Ad-
ditionally, this study underscores the importance of fractals,
as we believe that pre-training on natural 3D structures can
significantly enhance the understanding of real-world 3D
scenes.

3. Proposed Method
We introduce a fractal dataset for pre-training to enhance

feature extraction from outdoor point clouds observed by
airborne LiDAR. The proposed dataset consists of auto-
generated 3D fractal shapes and 3D fractal terrain. The con-
struction of the fractal dataset involved five key procedures.

• Automatic 3D Fractal Terrain Generation: Based
on fractional Brownian motion (fBm), we present a
method for the automatic generation of 3D terrain
models.

• Automatic 3D Shape Generation: Based on a 3D
iterated function system (3D IFS) [4], we present a
method for the automatic generation of 3D fractal
shapes.

• Category Definition: We define categories based on
the data distribution of the 3D fractal shapes.

• Instance Generation: For each category, we generate
instances using a novel augmentation method called
FractalNoiseMix.

• 3D Fractal Scene Generation: Finally, we automati-
cally generate 3D fractal scenes utilizing the 3D fractal
shapes and fractal terrain.

An overview of our framework is presented in Fig. 2.

3.1. 3D Fractal terrain generation

Fractals are well-suited for terrain generation because
they can naturally replicate the complexity and detail ob-
served in real-world landscapes. Their self-similar prop-
erty, where the structure appears similar at any magnifica-
tion level, makes them ideal for creating terrains that exhibit
realism across various scales.

Fractional Brownian Motion One common approach to
fractal-based terrain generation is fBm. fBm involves lay-
ering noises of multiple frequencies to create a height field
that mimics natural terrain. By sampling noise at different
scales and combining these samples, fBm generates a height
map representing a terrain’s surface. This method ensures
that the terrain possesses both large, smooth features and
small, intricate details, resulting in a more realistic appear-
ance, as shown in Fig. 3.

Hydraulic and Thermal Erosion To enhance the real-
ism of fractal-generated terrains further, additional erosion
processes can be simulated. Hydraulic erosion simulates
the effect of water flowing over terrain, transporting sedi-
ment from elevated areas to lower areas, thereby creating
valleys and riverbeds. This process mimics the natural ero-
sion caused by rainfall and river flow.

In contrast, thermal erosion simulates the effect of ma-
terial collapsing from steep slopes and accumulating at the
base. This process smooths out sharp ridges and cliffs, cre-
ating more natural-looking hills and valleys. By applying
these erosion techniques, the terrain can be further refined
to achieve a closer resemblance to real-world landscapes.

Iterated Function System Another powerful method for
fractal terrain generation is the IFS. The IFS utilizes a set
of affine transformations such as rotations, translations, and
scaling to generate self-similar structures recursively. This
method can create highly detailed and intricate terrains by
repeatedly applying these transformations to an initial shape
or point cloud.

The IFS process begins by defining multiple transforma-
tions with their associated probabilities. An initial point
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Figure 2. Overview of the formula-driven supervised learning(FDSL) framework for 3D semantic segmentation with 3D point clouds ob-
served by airborne LiDAR. We generate synthetic 3D point clouds of terrain and shapes using fractal geometry. The proposed fractal shapes
are automatically constructed by defining fractal categories using variance thresholds and instance augmentation with FractalNoiseMix. A
3D fractal scene is generated by randomly selecting 3D fractal shapes and translating them from the origin on the fractal terrain.

cloud is then generated and one of the transformations is
applied based on the defined probabilities. This process
is repeated for a predetermined number of iterations, each
time applying a transformation to the current point cloud.
The result is a complex terrain that exhibits the self-similar
characteristics of fractals.

Figure 3. Examples of fractal
terrain

Figure 4. Examples of fractal
shapes

3.2. 3D Fractal shape generation

We generate 3D fractal shapes from infinite pairs of 3D
fractal parameters and fractal categories using the 3D IFS,
which leverages the types of fractal geometry commonly
found in the real world. We hypothesize that by utilizing
fractal geometry, we can effectively represent complex pat-
terns in 3D shapes using the 3D IFS, thereby enhancing
3D scene understanding in real-world environments. A 3D
fractal shape is automatically generated through the follow-
ing five steps.

1. Multiple affine transformations and their selection
probabilities are randomly set.

2. An initial point cloud is defined at the origin coordi-
nates and set as the current point cloud.

3. One of the affine transformations is selected based on
the predefined selection probabilities.

4. The current point cloud undergoes an affine transfor-
mation to become the next point cloud using the se-
lected affine transformation.

5. Steps 3 and 4 are performed recursively up to a set
number of N iterations.

A 3D fractal shape is generated by iteratively applying
a 3D affine transform Tj to an initial point cloud. In the
present study, for the sake of simplicity, we introduced ho-
mogeneous coordinates to handle affine transforms. In ho-

mogeneous coordinates, a 3D point cloud x =

x
y
z

 ∈ R3

is described as x̂ =


x
y
z
1

 ∈ R4, where the notation ·̂ in-

dicates that the point is considered in homogeneous coordi-
nates. Note that 3D affine transformations include rotation,
translation, scaling, and skewing.

To generate 3D fractal shapes automatically, we apply
affine transformations randomly. To construct a 3D IFS
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set, affine transformations {Tj ∈ R4×4 | 1 ≤ j ≤ N}
are generated, where the elements of the affine transforma-
tion matrices are sampled from a uniform distribution in
the range of [−1.0, 1.0]. When an initial point x0 is given,
a 3D affine transformation Tj creates a 3D fractal model
P = {x0,x1, · · · ,xn} by applying

x̂i = T ix̂i−1 (1)

for i from zero to n, where n is the number of iterations.
The probability of selecting Tj is denoted as PTj

. Here,

pj =
|detTj |∑N
j=1 |detTj |

.

Note that the scaling factor of an affine transform Tj is given
by |detTj |. Next, we set the original coordinate location as
the initial point cloud P0 and select an affine transformation
from the 3D IFS according to the probabilities pj . A 3D
fractal shape is generated over 4,000 iterations.

3.3. Augmentation

The process of variance binning defines distinct fractal
categories, with each category corresponding uniquely to
one 3D fractal shape. To enhance the diversity of these 3D
fractal shapes, we introduce Fractal noise mixing (FNM)
for augmentation, which is inspired by Point Mixup [14].
Unlike Point Mixup, which enhances data by interpolating
between training samples to create intermediate categories,
our approach focuses on intra-category augmentation to im-
prove the effectiveness of fractal dataset pre-training.

FNM involves blending major and minor fractal cate-
gories or classes. For example, once a major fractal cat-
egory is chosen, it comprises 80% of the final 3D fractal
shape. Subsequently, we randomly select and incorporate
20% of a minor point cloud into the 3D fractal shape to
complement the major fractal structure. It should be noted
that during the classification of 3D fractal shapes, the major
fractal category is considered as the primary fractal cate-
gory. While random point clouds could be used for aug-
mentation, this approach may result in the loss of critical
fractal shape features. Therefore, we use FNM to ensure
that these essential features are preserved.

3.4. 3D Scene generation

To create a synthetic outdoor 3D scene, we start by ran-
domly sampling multiple objects from predefined 3D fractal
shapes. The number of objects in each scene is determined
using a Poisson distribution. We then generate 3D bounding
boxes and rotate the fractal shapes about the z-axis.

Additionally, we set the scale factor for the x axis ran-
domly between 0.75 and 1.25. This scale factor is then
adjusted by a coefficient for the aspect ratio (ranging be-
tween 0.9 and 1.1) along the y and z axes. This method

accounts for the minor variation in object scale typically
observed in 3D outdoor datasets. The orientation of each
3D fractal shape can be randomly rotated about the z axis to
introduce variability during training. Because these fractal
shapes lack a defined front, the rotation angle is randomly
set within the range [−180◦, 180◦].

Finally, to align the 3D fractal shapes with terrain struc-
tures, we translate them onto the z plane. This process in-
volves setting the x and y coordinates of each instance gen-
erated by the 3D fractal shapes as the centroid of the shape
and redefining the coordinates within the range [−7.5, 7.5].
Note that the minimum z coordinates for each 3D fractal
shape may not align on the same z plane.

In airborne LiDAR observations, real-world objects of-
ten appear to float based on the presence of elevated struc-
tures such as building roofs and power lines. Therefore, the
3D fractal shapes are placed in non-overlapping positions
within the scene.

4. Experiments
In this section, we first describe the pre-training pro-

cess of our fractal dataset and its fine-tuning for down-
stream datasets. We then present an analysis of experimen-
tal results to demonstrate our method’s advantages over 3D
scenes composed of CAD models. Finally, based on the
results, we compare the performance of the fractal dataset
to previous pre-training methods on two 3D segmentation
benchmarks.

4.1. Experimental setting

Pre-training on the fractal dataset In this study, we em-
ployed KP-Conv and PointTransformer to train an end-to-
end 3D semantic segmentation network. Unlike previous
methodologies, our approach enables the acquisition of ro-
bust feature representations for semantic segmentation dur-
ing the pre-training phase.

To construct the fractal dataset pre-trained models, we
configured the training parameters as follows. Pre-training
was conducted for a minimum of 1.8 million iterations with
a batch size of 64 and a learning rate of 0.004. Each gen-
erated fractal point cloud scene encompassed an area of 30
square meters. First, we generated a fractal terrain of 250
square meters in size, as illustrated in Fig. 3. Each parame-
ter was determined by random numbers for each scene and
10,000 scenes were generated, as illustrated in Fig. 4. Be-
cause fractal terrain is output as a surface, a point cloud was
randomly generated from this surface with approximately
10 points per square meter. Next, we generated a fractal
shape to place on the fractal terrain. The input point clouds
from each scene were randomly sampled to extract 40,000
points. Generating the fractal dataset, which contains 1,000
categories with 500 instances per category in 10,000 scenes,
required approximately two days. The pre-training process
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Table 1. Overview of the selected methods on the DALES data set. We report the mean IoU and per class IoU, for each category.

Method Pre-train mIoU Ground Vegetation Cars Trucks Power Lines Poles Fences Buildings

KPConv [52]
fractal 83.19 97.4 97.4 87.1 46.5 92.9 79.8 67.6 96.8

ModelNet 81.15 97.1 94.1 85.3 41.9 95.5 75 63.5 96.6
S3DIS 81.19 97.2 93.8 85.9 42.6 92.1 76.2 65.1 96.6

Point
Transformer [66]

fractal 75.75 97.8 96.5 86.4 39.1 80.2 46.7 67.3 92
ModelNet 68.26 94.1 91.2 75.4 30.3 79.9 40 46.2 89.1

S3DIS 68.51 94.4 91.8 75.9 31.1 80.5 39.9 45.9 88.6

was completed in six days using four NVIDIA Tesla V100
GPUs.

Fine-tuning for semantic segmentation Next, we evalu-
ated the fractal dataset pre-trained model using fine-tuning
datasets. The fine-tuning datasets we used, which were col-
lected by airborne LiDAR, were DALES [53] and OpenGF
[42]. These datasets, which represent outdoor scenes, are
frequently employed in 3D semantic segmentation tasks.
Fine-tuning was conducted over 180 epochs with a batch
size of 64 and an initial learning rate of 0.01. The learn-
ing rate was reduced at intervals of 40, 80, 120, and 160
epochs. The input point clouds were randomly sampled to
extract 40,000 points for each dataset.

4.2. Results

Effects of pre-training In this subsection, to under-
stand the effects of pre-training tasks and demonstrate our
method’s advantages over CAD models, we present the re-
sults of multiple experiments. We investigated the follow-
ing question. Which is the most effective for pre-training:
3D fractal models, CAD models, or indoor datasets (see Ta-
bles 1 and 2)?. We evaluated the effectiveness of our 3D
fractal dataset using 3D fractal models.

We compared the pre-training performance of our 3D
fractal dataset with that of 3D scenes composed of CAD
models from ModelNet [62] and an indoor dataset from
S3DIS [3]. As shown in Tables 1 and 2, the fractal dataset
pre-trained KP-Conv and PointTransformer model outper-
formed the models pre-trained on the ModelNet dataset.
The performance of KP-Conv improved by +2.5% on the
DALES dataset and +4.1% on OpenGF in terms of mean in-
tersection over union (mIoU), and the performance of Point-
Transformer improved by +10.0% on the DALES dataset
and +6.0% on OpenGF in terms of mIoU. Additionally, the
fractal dataset pre-trained KP-Conv and PointTransformer
models outperformed the models pre-trained on the 3DS-
DIS dataset [2]. The performance of KP-Conv improved
by +2.5% on the DALES dataset and +1.4% on OpenGF in
terms of mIoU, and the performance of PointTransformer
improved by +11.0% on the DALES dataset and +3.0% on
OpenGF in terms of mIoU. Both models were highly effec-
tive for small objects (e.g., poles and cars) in the DALES

dataset.
Between ModelNet and the indoor data, pre-training on

the fractal dataset had less effect when using indoor data.
ModelNet’s weights are tuned for classification tasks and
only the encoder parts of KPConv and PointTransformer
can be trained, whereas S3DIS represents a segmentation
task, so all weights except for those in the classification
layer can be reused.

Consequently, we confirmed that our 3D synthetic fractal
dataset generated based on fractal geometry is more effec-
tive than 3D pre-trained models with well-organized sur-
face data such as ModelNet and indoor scenes, indicating
that fractal geometric features are essential for effective pre-
training. The proposed fractal dataset better accommodates
pre-training on complex geometric shapes compared with
CAD models or indoor datasets. This suggests that the frac-
tal dataset can capture more diverse variations and common
3D patterns found in the real world, a significant advan-
tage attributable to its construction based on fractal geome-
try. There was a noticeable difference in the effect of the
fractal dataset between OpenGF and DALES data. This
is thought to be because OpenGF is a dataset containing
a large amount of vegetation such as forests, making this
dataset more compatible with fractal shapes. Additionally,
the reason why PointTransformer was more effective than
KP-Conv on the fractal dataset is thought to be related to
the scaling law of the transformer [28]. With conventional
datasets, the transformer structure cannot be fully utilized,
so PointTransformer performs worse than KP-Conv, which
does not use a transformer. Our pre-training process using a
large-scale fractal dataset is thought to be more compatible
with PointTransfomer.

Comparison with other pre-training methods Here, we
compare the proposed fractal dataset with self-supervised
learning methods such as PointContrast [56] and CSC [22]
in terms of pre-training effectiveness(see Table 3). In this
experiment, we utilized KP-Conv and PointTransformer.

KP-Conv pre-trained with the fractal dataset resulted in
a +1.2% improvement on DALES and +2.8% improvement
on OpenGF in terms of mIoU compared with training from
scratch with random values. PointTrasformer pre-trained
with the fractal dataset resulted in a +8.0% improvement
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Table 2. Overview of the selected methods on the OpenGF data set. We report the per class IoU, for each category.

Method Pre-train mIoU non-ground ground

KPConv [52]
Fractal 97.0 96.6 97.3

ModelNet 93.2 93.7 92.6
S3DIS 95.6 96.1 95.2

Point
Transformer [66]

Fractal 95.6 94.5 96.7
ModelNet 90.2 89.0 91.4

S3DIS 92.9 92.5 93.4

Table 3. Comparison of pre-training methods.

PreTrain Method Dataset Model mIoU

PointContrast [56]
DALES KP-Conv 82.01

PointTransformer 74.22

OpenGF KP-Conv 95.38
PointTransformer 94.53

CSC [22]
DALES KP-Conv 81.21

PointTransformer 73.19

OpenGF KP-Conv 95.52
PointTransformer 94.87

Random value
DALES KP-Conv 82.15

PointTransformer 70.12

OpenGF KP-Conv 93.19
PointTransformer 92.99

fractal dataset
DALES KP-Conv 83.19

PointTransformer 75.75

OpenGF KP-Conv 96.96
PointTransformer 95.60

on DALES and +4.0% improvement on OpenGF in terms
of mIoU compared with training from scratch with random
values. Furthermore, we observed that the performance
of fractal dataset is relatively higher than that of previous
state-of-the-art self-supervised learning methods. Our frac-
tal dataset yields performance approximately equivalent to
that of CSC and PointContrast. Notably, the performance
of the fractal dataset when using PointTransformer is bet-
ter than that of PointContrast on DALES and OpenGF. The
advantage of our method compared with existing SSL ap-
proaches is that it can reproduce various three-dimensional
geometric scenarios that occur in nature using fractals, and
because the amount of data can theoretically be increased
infinitely, it has the major advantage of being able to as-
sist in training deep learning models using large amounts of
data.

Limited training data Furthermore, as illustrated in Fig.
1, the fractal dataset yields superior performance under con-
ditions with limited training data and annotations compared
with previous SSL methods. This underscores the impor-

tance of pre-training with a substantial number of 3D scenes
for datasets with limited annotations. Given the high anno-
tation costs in the 3D vision field, the concept of construct-
ing 3D datasets using FDSL without the need for manual
data collection and annotation offers a promising direction
for 3D vision research.

5. Conclusion
In this paper, we introduced fractal-based point cloud

generation, a novel FDSL approach inspired by the frac-
tal geometry commonly found in natural 3D structures. Our
synthetic fractal dataset, which facilitates pre-training for
point clouds observed outdoors, consists of two key ele-
ments: fractals representing topography and fractals repre-
senting objects such as vegetation. The primary feature of
our approach is the automatic construction of 3D datasets,
eliminating the need for observed data and human annota-
tion, in contrast to previous supervised learning methods.

Our experimental results demonstrated that the proposed
fractal dataset significantly enhances the performance of
3D semantic segmentation tasks such as land-use classifi-
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cation and filtering. Notably, the fractal-dataset-pre-trained
model proved to be more effective in scenarios with lim-
ited training data and annotations compared with previous
SSL methods, as it allows for the pre-training of the entire
network.

We have established a conceptual framework for con-
structing effective pre-training datasets for 3D segmenta-
tion. We believe that our fractal dataset will serve as an
essential tool for advancing the understanding of 3D scenes
in the future.
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