
Appendix

A. Algorithm to Generate Synthetic Dataset

Algorithm 1 Algorithm to Generate Synthetic Dataset

Input: xbase and xcut (base image and another image for
CutMix from the EuroSAT dataset), p1 and p2 (prob-
abilities to apply seasonal change and cloud cover),
is disaster (indicator to apply task-relevant change)

Output: X = {x1, . . . ,x5} (generated satellite image
time series)

1: for i← 1 to 4 do ▷ Apply seasonal change and cloud
cover to mimic pre-disaster images

2: xi ← ApplyRandomSeasonalChange(xbase, p1)
3: xi ← ApplyRandomCloudCover(xi, p2)
4: end for
5: if is disaster then
6: M← GenerateRandomSoftMask ▷ Generate a

random mask with the Gaussian filter for CutMix
7: x5 ← CutMix(xbase,xcut,M)
8: end if
9: x5 ← ApplyRandomSeasonalChange(x5, p1) ▷

Only apply seasonal change to the last image to mimic
the post-disaster scenario

B. Implementation Details
The original data for the EuroSAT and RaVÆn datasets

are based on Sentinel-2, an optical satellite that captures
geo-referenced images across 13 spectral bands. For our ex-
periments, we simplify the process by using only the RGB
bands (bands 4, 3, and 2), which provide sufficient visual
information for detecting extreme events. This choice not
only aligns with common practices in optical satellite im-
age analysis but also reduces memory usage during model
training.

For the autoencoder setup described in Section 3.2, we
employ a weight-shared Vision Transformer [10] as the
encoder and a weight-shared transformer-based decoder
[2,15] to reconstruct the satellite patch time series. Inspired
by the hyperparameter choices in [10] and [15], we set
the embedding dimension to 256, patch size to 8, encoder
depth to 4, number of heads to 8, and decoder depth to 4,
considering our input patch size of 64 × 64.

Our method is implemented using PyTorch [22]. Adam
with a weight decay of 1e−6 is used as the optimizer, and a
grid search for learning rates within the range [1e−5, 5e−5,
1e−4, 5e−4, 1e−3, 5e−3, 1e−2] revealed that 1e−4 was the
most stable. Cosine annealing with a warmup epoch of 10
serves as the learning rate scheduler. The batch size and
learning epoch are uniformly set to 64 and 200, respectively,
for all experiments. Following standard machine learning

protocols, hyperparameter selection is done using the val-
idation set based on the primary evaluation metrics, Aver-
age Precision (AP). Based on extensive grid search, we set
the loss balancing weights λ = 0.5 and µ = 0.5 for the
synthetic dataset, and λ = 0.25 and µ = 0.5 for the real-
world dataset. To complement the primary evaluation met-
ric AP, which is threshold-independent and used for model
optimization, we also report the F1 score to demonstrate the
model’s performance at a specific threshold. The threshold
for the F1 score is selected on the testing set via grid search
to identify the value that maximizes F1. It is important to
note that this threshold selection is solely for demonstration
purposes and does not influence model training or hyper-
parameter tuning. The primary evaluation remains based
on the threshold-independent AP metric to ensure unbiased
performance assessment. This procedure is applied consis-
tently to both our method and all baseline methods to ensure
fair comparisons.

All results reported in this paper are based on models
trained three times with different random seeds: 42, 43, and
44, respectively. NVIDIA A100 GPUs were used for all
experiments.

C. Rationale for Patch-Level Focus: Dataset
Characteristics and Challenges

In this work, we focus on patch-level information rather
than pixel-level information for extreme events detection.
While pixel-level analysis is a common practice in remote
sensing, our choice of patch-level focus stems from spe-
cific characteristics of the RaVÆn dataset used in this study.

Figure 5. Histogram of patch change ratios, where the change
ratio is defined as the proportion of changed pixels relative to the
total pixels in each patch. The binary distribution shows that most
patches are either entirely unchanged (change ratio close to 0) or
fully affected by extreme events (change ratio close to 1). This
supports the rationale for a patch-level focus in our approach.



(a) Good annotation examples (flooding): Fine-grained and meaningful pixel-level annotations.

(b) Bad annotation examples: Coarse and unclear pixel-level annotations, making them difficult to interpret.

Figure 6. Examples of pixel-level annotations in the dataset. Good annotations 6a are meaningful and accurately reflect ground truth,
particularly for flooding events, while bad annotations 6b are coarse and challenging for model interpretation.

This section highlights the reasoning behind this approach
and its implications for future research.

A key characteristic of the RaVÆn dataset is that most
patches are either entirely unchanged or entirely affected by
extreme events. This binary distribution makes patch-level
focus a reasonable choice for effective detection. Figure 5
illustrates the histogram of patch statistics, highlighting the
dominance of fully-changed and unchanged patches.

Another factor influencing our patch-level approach is
the quality of the pixel-level annotations in the dataset.
While some annotations, particularly for flooding events,
are meaningful and accurately reflect ground truth (e.g.,

Figure 6a), many annotations for other disaster types are
coarse and often difficult to interpret (e.g., Figure 6b), mak-
ing it challenging for the model to learn from pixel-level
annotations, further motivating a patch-level focus.

In summary, the choice of patch-level focus is driven by
the dataset’s binary patch characteristics and limitations in
pixel-level annotations. Addressing these dataset-specific
challenges highlights the need for large-scale multi-disaster
datasets with fine-grained, consistent annotations. Such
datasets would better reflect real-world disaster response
needs, enabling more robust and generalizable models for
future research.


