
9. Supplementary Material
Detailed Information for the Experimental Setup

We define the Similarity Trajectory as a discrete time se-
ries {zt}1t=T−1, where T is the total number of time steps
in the sampling process. Each element zt represents the
similarity score between the denoised images in consecutive
time steps t and t − 1. To analyze fluctuations within this
trajectory, we segment it either based on time steps or by
projecting it onto different bases using the Haar Transform.
We extract various statistical quantities to characterize each
set which subsequently serve as inputs to a RF Classifier.
Segmenting the Similarity Trajectory in the time domain al-
lows us to capture variations at specific time steps, which
convey varying information; notably, fluctuations during the
middle section of sampling are critical for artifact detec-
tion. Additionally, the coefficients from different levels of
the Haar Transform reveal fluctuations at various frequen-
cies, enabling us to characterize the duration and magnitude
of these changes.

Segmentation of the Time Series

We divide the entire Similarity Trajectory into three
equal sets S1, S2, S3 based on time steps, as well as con-
sidering the entire series as a single set, denoted as S4. Seg-
ments in the time domain are formally defined as:

• Segment 1 (S1):

S1 = {zt | t = 1, 2, . . . , N1},

where

N1 =

⌊
T − 1

3

⌋
.

• Segment 2 (S2):

S2 = {zt | t = N1 + 1, N1 + 2, . . . , N2},

where

N2 =

⌊
2(T − 1)

3

⌋
.

• Segment 3 (S3):

S3 = {zt | t = N2 + 1, N2 + 2, . . . , T − 1}.

• Segment 4 (S4):

S4 = {zt | t = 1, 2, . . . , T − 1}.

Segmentation of Coefficients for Haar Transform

We apply the discrete Haar wavelet transform to the en-
tire Similarity Trajectories {zt}1t=T−1 because of its ability
to detect sudden changes in time-series data [23]. In this
section, we first introduce the Haar Transform, and then we
explain how to process the Similarity Trajectory using the
Haar Transform.

Haar Transformation

The Haar Transform decomposes the original time series
into approximation and detail coefficients at various scales,
capturing both global trends and local variations.

At the first level of decomposition, for k =

1, 2, . . . ,

⌊
T − 1

2

⌋
, the approximation coefficients a1(k)

and detail coefficients d1(k) are calculated as:

a1(k) =
z2k−1 + z2k

2
, (10)

d1(k) =
z2k−1 − z2k

2
. (11)

This process is recursively applied to the approximation
coefficients to obtain higher-level coefficients. At level j +
1, the coefficients are computed as:

aj+1(k) =
aj(2k − 1) + aj(2k)

2
, (12)

dj+1(k) =
aj(2k − 1)− aj(2k)

2
, (13)

where j = 1, 2, . . . , J , and J is the maximum level of
decomposition. From the transformation, we obtain a set
of detail coefficients {dj(k)} corresponding to each basis
function at various levels. Note that the detail coefficients
capture the fluctuation information of the Similarity Trajec-
tory, which is important for assessing the presence of arti-
facts in the image.

We segment the detail coefficients obtained from
the Haar Transform of the entire Similarity Trajectory
{zt}1t=T−1 by grouping them according to their correspond-
ing Haar basis functions. Each set Sj consists of all detail
coefficients at decomposition level j:

Sj = {dj(k) | k = 1, 2, . . . , Nj},

where Nj =

⌈
T − 1

2j

⌉
is the number of coefficients at level

j. This segmentation aligns each set of detail coefficients
with their respective scales in the time series, allowing us to
analyze fluctuations captured by each Haar basis function
effectively.

Feature Extraction

For all the sets S obtained—whether from the detail co-
efficients of the Haar Transform or in the time domain—we
calculate ten statistical features for each set to perform the
bag-of-statistics method. These statistical features are cho-
sen to describe the dynamics of the Similarity Trajectory
as we already established that the fluctuation in Similarity
Trajectory is correlated to the presence of artifacts. They
include:



1. Mean (µS): The average value of the data in the set S.

µS =
1

NS

∑
s∈S

s, (14)

where NS is the number of elements in the set S.

2. Standard Deviation (σS): Measures the dispersion of
the data in the set S. This is related to fluctuation in
the Similarity Trajectory for sets in the time domain.

σS =

√
1

NS

∑
s∈S

(s− µS)
2
. (15)

3. Percentile: We extract the 5th, 25th, 50th, 75th, and
95th percentiles for each obtained set’s values. The
significance of percentiles lies in their relation to the
fluctuation of the Similarity Trajectory for detail coef-
ficients.

4. Number of Mean Crossings (Cµ,S): Counts how
many times the data crosses its mean value in the set
S. This describes how rapidly the Similarity Trajec-
tory fluctuates in the time domain.

Cµ,S =

NS∑
i=1

I [(Si+1 − µs) (Si − µs) < 0] , (16)

where NS is the total number of elements in set S. Si

is the ith element in S and I[·] is the indicator function.

5. Number of Zero Crossings (C0,S): Counts how many
times the data crosses zero in set S. Note that in detail
coefficients, this represents how many times the Sim-
ilarity Trajectory changes direction, from monotoni-
cally increasing to monotonically decreasing or vice
versa.

C0,S =

NS∑
i=1

I [Si+1Si < 0] . (17)

where NS is the total number of elements in set S. Si

is the ith element in S and I[·] is the indicator function.

6. Entropy (Es): Measures how uniform of the data in
set S is. Again, this is another metric characterizing
the fluctuations of the set.

ES = −
∑
i

p
(S)
i log2 p

(S)
i , (18)

where p
(S)
i is the probability of the i-th bin in the his-

togram of the data in set S.

These features are computed for both the time-domain
data and the detail coefficients from Haar Transform, result-
ing in a comprehensive feature set that captures both tem-
poral and frequency-domain characteristics.

Using k-Nearest Neighbor Model Probabilities

We employed a k-Nearest Neighbor (k-NN) model
trained directly on the time-domain Similarity Trajectory.
This k-NN model estimates the probability of artifact pres-
ence by assessing the proportion of its nearest neighbors
that are labeled as artifact or non-artifact images. These
predicted probabilities are then incorporated as additional
features into the RF Classifier.

Feature Vector Construction

For every set S, we formulate a feature vector fS which
includes ten statistical features. The comprehensive feature
vector F for the trajectory is then assembled by concatenat-
ing all fS vectors from every set along with the prediction
probability from the k-NN model. The feature vector F
serves as the input to the RF Classifier for both training and
inference.


