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Abstract

Human pose estimation is an important problem with
broad applications that can be particularly useful for pri-
vacy preservation when analyzing activities and human-
object interactions. We propose the Waterfall Transformer
architecture for Pose estimation (WTPose), a single-pass,
end-to-end trainable framework designed for multi-person
pose estimation. Our framework leverages a transformer-
based waterfall module that generates multi-scale feature
maps from various backbone stages. The module performs
filtering in the cascade architecture to expand the receptive
fields and to capture local and global context, therefore in-
creasing the overall feature representation capability of the
network. Our experiments on the COCO dataset demon-
strate that the proposed WTPose architecture, with a mod-
ified Swin backbone and transformer-based waterfall mod-
ule, outperforms other transformer architectures for multi-
person pose estimation.

1. Introduction
Human pose estimation is a challenging computer vi-

sion task that deals with predicting the spatial locations of
keypoints or joints of the human body. Challenges arise
from several factors, including the intricate mechanics of
human movement, frequent occlusions, diverse body ap-
pearances, and variations in scale and background. Deep
learning methods based on Convolutional Neural Networks
(CNNs) have increased state-of-the-art performance in pose
estimation [3, 7, 35]. More recently, vision transformers
[13, 15, 21, 32, 36, 40] have shown excellent performance
in computer vision tasks, including pose estimation. This
paper presents a new transformer architecture - called wa-
terfall transformer - that can benefit pose estimation.

Human pose estimation has emerged as a transforma-
tive technology with a wide range of practical applica-
tions across domains such as healthcare, sports analytics,
robotics, and retail. In the retail industry, it can be particu-
larly impactful for analyzing activities and human-object in-

Figure 1. WTPose examples from the COCO dataset.

teractions while preserving customer privacy. Skeletoniza-
tion avoids display of the human body and face, addressing
growing concerns about safety, privacy and security when
using AI systems. Pose estimation enables retailers to gain
insights into how customers engage with products, shelves,
and displays, providing valuable data for optimizing store
layouts and improving product placement. By relying on
skeletal keypoints rather than biometric or facial data, pose
estimation ensures privacy while providing actionable in-
sight into customer behavior. Additionally, pose estimation
plays a critical role in theft prevention by detecting sus-
picious behaviors, such as unusual movements near high-
value items, enhancing security without compromising em-
ployee and customer privacy. Furthermore, employee track-
ing with pose estimation is a privacy preserving approach
to enhancing safety in stores and warehouses by monitor-
ing activities and preventing errors that could lead to acci-
dents. With its potential to revolutionize customer engage-
ment, operational efficiency, safety and security, pose esti-
mation is becoming a cornerstone of innovation in the retail
industry.

In this paper, we propose WTPose, a “Waterfall Trans-
former” architecture for pose estimation offering a flexi-
ble framework for improved performance over the base-
line models. Pose estimation examples using WTPose are
shown in Figure 1. A key innovation of our architec-
ture is the integration of our multi-scale Waterfall Trans-
former Module (WTM), which enhances the performance
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of vision transformer models, such as the Shifted Window
(Swin) transformer [21]. The WTM processes feature maps
from multiple levels of the backbone through its waterfall
branches. The module performs filtering operations based
on a dilated attention mechanism to increase the Field-of-
View (FOV) and capture both local and global context, lead-
ing to significant performance improvements. The contribu-
tions of this paper are the following.

• We introduce the novel Waterfall Transformer archi-
tecture for pose estimation, a single-pass, end-to-end
trainable, multi-scale approach for top-down multi-
person 2D pose estimation.

• We propose a waterfall transformer module with multi-
scale attention, that employs a dilated attention mecha-
nism enabling a larger receptive field to capture global
and local context.

• Our experiments on the COCO dataset demonstrate
improved pose estimation performance over compara-
ble transformer methods.

2. Related Work
2.1. CNNs for pose estimation

With the advancement of deep convolutional neural net-
works, human pose estimation has achieved superior re-
sults [3, 7, 31, 35]. The Convolutional Pose Machine
(CPM) [35] architecture includes multiple stages, produc-
ing increasingly refined joint detection. The OpenPose
method [7] included Part Affinity Fields to deal with pose
of multiple people in an image. The Stacked Hour-glass
network [24] uses repeated bottom-up and top-down pro-
cessing with intermediate supervision to process across all
scales and capture the best spatial relationship associated
with the body for accurate pose estimation. Expanding on
the stacked hourglass networks, the multi-context attention
approach [11] designs Hourglass Residual Units (HRUs)
with the goal of generating attentions maps with larger re-
ceptive fields at multiple resolutions and with various se-
mantics. Additionally, post-processing with Conditional
Random Fields (CRFs) is used to generate locally and glob-
ally consistent pose estimates.

The High-Resolution Network (HRNet) architecture
[29, 33] connects high-to-low sub-networks in parallel,
maintaining high-resolution representations throughout the
process, and generating more accurate and spatially precise
pose estimates. The Multi-Stage Pose Network [18] oper-
ates similarly with HRNet [33], but it employs a cross-stage
feature aggregation strategy to propagate information from
early stages to the latter ones and is equipped with coarse-
to-fine supervision.

The UniPose+ [3], OmniPose [2], and BAPose [4, 5]
methods propose multiple variants of the Waterfall Atrous

Spatial Pooling (WASP) module for single person, multi-
person top-down and multi-person bottom-up pose estima-
tion. The WASP module is the inspiration for the waterfall
transformer module in WTPose, as it significantly increases
the multi-scale representations and field-of-view of the net-
work and extracts features with a greater amount of contex-
tual information, resulting in more precise pose estimates
without the need for post-processing.

2.2. Vision Transformers for Pose Estimation

There is a recent surge of interest in models that em-
ploy transformer architectures for human pose estimation
[19, 28, 36, 37, 40, 41]. In earlier works, a CNN back-
bone was used as a feature extractor and the transformer
was treated as a superior decoder [19, 37]. The Trans-
Pose [37] architecture combines the initial parts of CNN-
based backbones to extract features from images and the
standard transformer architecture [32] to utilize attention
layers for learning dependencies and predicting keypoints
for 2D human pose estimation. However, TransPose has
a limitation in modeling direct relationships between key-
points. TokenPose [19] explicitly embeds each keypoint
as a token and simultaneously learns both visual clues
and constraint relations through self-attention interactions.
The HRFormer [40] is inspired by HRNet [33] and uti-
lizes a multi-resolution parallel design. It adopts convo-
lution in the stem and first stage, followed by transformer
blocks. The transformer blocks perform self-attention
on non-overlapping partitioned feature maps and use 3x3
depth-wise convolution for cross-attention among the par-
titioned maps. ViTPose [36] adopts the plain and non-
hierarchical vision transformer [13] as a backbone to ex-
tract feature maps. The architecture then employs either
deconvolutional layers or a bilinear upsampling-based de-
coder for 2D pose estimation. PoseFormer [41] proposed a
pure transformer-based architecture for 3D pose estimation,
based on 2D pose sequences in video frames.

2.3. Pose Representation

Early approaches to human pose estimation focused on
directly predicting the coordinates of body joints from im-
ages [8, 23, 30, 31]. While these methods were efficient,
their performance was limited due to the challenge of mod-
eling the complex, non-linear mapping between raw im-
age features and joint coordinates. To address these lim-
itations, methods such as residual log-likelihood estima-
tion [17] were proposed, aiming to better capture the under-
lying output distribution and improve the accuracy of joint
localization. Recently, transformers have brought notable
improvements due to their ability to capture long-range de-
pendencies [22, 27].

The introduction of heatmap-based representations [1,
3, 18, 34] brought a major advancement in pose estimation
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Figure 2. Waterfall transformer framework for multi-person pose estimation. The input image is fed through the modified Swin Transformer
backbone and WTM module to obtain 128 feature channels at reduced resolution by a factor of 4. The decoder module generates K
heatmaps, one per joint.

by providing robust localization and generalization capa-
bilities. These methods encode joint positions as Gaussian
peaks in heatmaps, allowing models to learn spatial distri-
butions rather than precise coordinate mappings, which are
prone to errors. These methods excel at handling occlusions
and ambiguities, making them the dominant approach in the
field. Subsequent research has focused on further enhanc-
ing heatmap-based methods by developing more powerful
network architectures to estimate heatmaps with higher ac-
curacy [3, 9, 10, 24, 29]. For instance, stacked hourglass
networks [24] and convolutional pose machines [35] have
been widely adopted for their ability to refine feature rep-
resentations across multiple stages. However, heatmap rep-
resentation methods suffer from quantization errors caused
by the down-sampling operations in neural networks and do
not model joint dependencies explicitly.

To address joint dependency modeling, earlier ap-
proaches [25, 38] relied on pictorial structures, where re-
lationships between body joints were explicitly defined us-
ing anatomical priors. However, these methods had sig-
nificant limitations, such as an inability to represent com-
plex patterns and a lack of end-to-end trainability. Recent
deep learning-based methods [6, 14, 39] have addressed
these issues by implicitly modeling dependencies through
the propagation of visual features between joints. For exam-
ple, in [6], geometrical transform kernels were introduced
to fuse features across different channels, capturing joint-
specific characteristics. Similarly, in [14], a structured rep-
resentation was proposed that defines M discrete tokens,
each representing a sub-structure consisting of interdepen-
dent joints. Pose estimation is then framed as a classifi-
cation task, where the model predicts the structure corre-
sponding to these M tokens for a given image.

In this work, we adopted a top-down heatmap represen-
tation method for human pose estimation. Our WTPose ar-
chitecture incorporates a multi-scale Waterfall Transformer
Module, designed to learn feature map representations at

both multi-scale and multi-stage levels. By capturing fine-
grained local details as well as broader contextual infor-
mation, our method effectively models joint dependencies
and demonstrates robustness to quantization errors caused
by down-sampling or occlusions.

3. Waterfall Transformer
The proposed waterfall transformer architecture, shown

in Figure 2, is a single-pass, end-to-end trainable network
that incorporates a modified Swin transformer [21] back-
bone and our multi-scale waterfall transformer module for
multi-person pose estimation. The patch partition layer in
Swin [21] is replaced by two 3×3 convolutions (Stem) fol-
lowed by the first residual block of ResNet-101 [16], im-
proving the feature representation of Swin.

The processing pipeline of WTPose is illustrated in Fig-
ure 2. The input image is fed to the transformer backbone
which consists of our modified Swin transformer. The re-
sulting multi-scale feature maps from multiple stages of
Swin are processed by our waterfall transformer module
and are fed to the decoder to generate K heatmaps, one
heatmap per joint. The multi-scale WTM maintains high
resolution of feature maps and generates accurate predic-
tions for both visible and occluded joints.

The architecture of our waterfall transformer module is
presented in Figure 3. The WTM takes inspiration from the
Disentangled Waterfall Atrous Spatial Pooling (D-WASP)
module [4, 5], which utilizes atrous blocks and the wa-
terfall architecture to enhance the multi-scale representa-
tions. However, unlike D-WASP [4, 5], which expands the
FOV through atrous convolution, our proposed approach
employs a dilated neighborhood attention transformer block
to expand the FOV.

The dilated transformer is built on the DiNAT [15] archi-
tecture, featuring both dilated and non-dilated neighbouring
attention. The dilated neighborhood attention expands the
local receptive fields by increasing the dilation rates and
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Figure 3. The proposed waterfall transformer module. The inputs are multi-scale feature maps from all four stages of the Swin backbone
and low-level features from the ResNet bottleneck. The waterfall module creates a waterfall flow, initially processing the input and then
creating a new branch. The feature dimensions (spatial and channel dimensions) output by various blocks are shown in parentheses.

performs sparse global attention. On the other hand, the
non-dilated neighborhood attention confines self-attention
of each pixel to its nearest neighbors.

To address contextual and spatial information loss re-
sulting from the hierarchical backbone structure, the WTM
processes multi-scale feature maps from all four stages of
the Swin backbone through waterfall branches. The WTM
module first performs upsampling operation using bilin-
ear interpolation on the low-resolution feature maps from
backbone stages 2, 3, and 4, to match them with the high-
resolution feature maps from stage 1, and then combines all
the feature maps to generate multi-scale feature representa-
tions for enhanced joint estimation. The multi-scale feature
representation is then processed with 1×1 convolutions to
reduce the channel size to 128. The concatenation (repre-
sented by the summation operator) of the feature maps is

g0 =

4∑
i=1

(fi), (1)

where fi represents the feature maps from the Swin back-
bone and the index i =1,2,3,4 indicates the Swin stages. The
output after channel reduction is

z0 = W1 ⊛ g0 (2)

where W1 denotes the 1×1 convolution kernel and ⊛ rep-
resents convolution.

The output feature maps z0 are then fed into the wa-
terfall transformer blocks (WTB) which expand the FOV
by performing a filtering cascade at increasing rates. Each
WTB contains two types of attention, dilated multi-head
neighborhood self-attention (D-MHSA) followed by multi-
layer perceptron (MLP) to capture global context, and non-
dilated multi-head neighborhood self-attention (N-MHSA)

followed by MLP to capture local context.

ẑl = D-MHSA(LN(zl−1)) + zl−1,

zl = MLP(LN(ẑl)) + ẑl,

ẑl+1 = N-MHSA(LN(zl)) + zl,

zl+1 = MLP(LN(ẑl+1)) + ẑl+1

where ẑl and zl denote the output features of the MHSA
modules and MLP module for block l, respectively; D-
MHSA and N-MSHA denote the multi-head self-attention
based on dilated and non-dilated window, respectively.

The waterfall module is designed to create a waterfall
flow, initially processing the input and then creating a new
branch. The WTM goes beyond the cascade approach by
combining all streams from all its WTB branches and the
depth-wise pooling (DWP) layer from the multi-scale rep-
resentation.

fWaterfall = W1 ⊛

(
4∑

i=1

zi + DWP(g0)

)
(3)

fmaps = W3 ⊛ (W3 ⊛ (W1 ⊛ fLLF + fWaterfall)) (4)

where, summation denotes concatenation, fLLF are the
low-level features from ResNet bottleneck, and W1 denotes
1×1 convolution, and W3 denotes 3×3 convolution with
kernel size of 3 and strides of 1.

4. Experiments
4.1. Dataset

We conducted multi-person pose estimation experiments
using the Common Objects in Context (COCO) dataset
[20]. The COCO dataset consists of over 200k images cap-
tured in diverse real-world settings, containing more than
250k instances with annotated human keypoints. These
keypoints include 17 landmarks representing major joints
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Method Input Size Params (M) GFLOPs AP AP 50 AP 75 APM APL AR
HRNet-W32 [29] 256×192 28.5 7.1 74.40 90.50 81.90 70.80 81.00 78.90
HRNet-W48 [29] 256×192 63.6 14.6 75.10 90.60 82.20 71.50 81.80 80.40

Swin-T [12] 256×192 32.8 6.3 72.44 90.09 80.59 68.99 79.05 78.20
WTPose-T (Ours) 256×192 30.0 12.8 74.23 90.42 81.62 70.69 80.56 79.43

Swin-B [12] 256×192 93.0 19.0 73.72 90.45 81.93 70.17 80.45 79.32
WTPose-B (Ours) 256×192 89.3 25.6 74.96 90.54 82.16 71.71 81.74 80.51

Swin-L [12] 256×192 203.0 41.0 74.30 90.56 82.09 70.58 81.22 79.82
WTPose-L (Ours) 256×192 198.0 47.9 75.40 90.65 82.60 71.76 82.33 80.81
HRNet-W32 [29] 384×288 28.5 17.3 75.80 90.60 82.70 71.90 82.80 81.00
HRNet-W48 [29] 384×288 63.60 35.4 76.30 90.80 82.90 72.30 83.40 81.20

Swin-T [12] 384×288 32.8 13.8 74.89 90.47 82.14 70.98 82.12 80.93
WTPose-T (Ours) 384×288 30.0 28.3 76.36 90.80 82.95 72.33 83.40 81.43

Swin-B [12] 384×288 93.2 41.6 75.81 90.92 83.10 71.61 82.97 80.99
WTPose-B (Ours) 384×288 89.3 55.8 77.18 91.15 84.21 73.54 83.92 82.07

Swin-L [12] 384×288 203.0 88.2 76.30 91.21 83.02 72.14 83.50 81.44
WTPose-L (Ours) 384×288 198.0 104.0 77.56 91.43 84.42 73.93 84.34 82.61

Table 1. WTPose results and comparison on the COCO validation dataset.

in the torso and limbs, as well as facial features such as the
nose, eyes, and ears. The dataset presents a significant chal-
lenge due to its large scale, varied image contexts, diverse
object sizes, and frequent occlusions.

4.2. Metrics

We adopt Object Keypoint Similarity metric (OKS) to
evaluate our model, given as:

OSK =

(∑
i e

− d2i
2s2k2

i

)
δ(vi > 0)∑

i δ(vi > 0)
(5)

where, di is the euclidian distance between the estimated
keypoint and its ground truth, vi indicates if the keypoint is
visible, s is the scale of the corresponding target, and ki is
the falloff control constant.

Following the evaluation framework set by [20], we re-
port OKS as the Average Precision (AP) for the IOUs for all
instances between 0.5 and 0.9 (AP), at 0.5 (AP 50) and 0.75
(AP 75), as well as instances of medium (APM ) and large
size (APL). We also report the Average Recall between 0.5
and 0.95 (AR).

4.3. Implementation details

We utilized the variants of Swin transformer as the back-
bone, initializing it with pre-trained weights from [21]. For
the WTM module, we experimented with various rates of
dilation and discovered that alternating between larger re-
ceptive field from dilated window and a small receptive field
from non-dilated window results in improved prediction.
We set the dilation rate for the WTB blocks to (2,1), (4,1),
(6,1), (8,1), with window size of 7. Our models were trained

on 4 A100 GPUs using the mmpose codebase [12], with a
batch size of 32. We used the default training setting in
mmpose to train WTPose, and employed the AdamW [26]
optimizer with a learning rate of 5e-4. Our models were
trained for 210 epochs, with a learning rate decay by 10 at
the 170th and 200th epoch.

4.4. Experimental results on the COCO dataset

We performed training and testing on the COCO dataset
and compared our WTPose architecture with the modi-
fied Swin backbone, as shown in Table 1. Our WTPose
models consistently outperform their Swin counterparts in
terms of average precision (AP) and average recall (AR)
across all input sizes and model variants. For an input size
of 256×192, WTPose achieves 1.79%, 1.24%, and 1.10%
gains in AP over Swin for the tiny, base, and large vari-
ants, respectively. Similar performance improvements are
observed across other metrics and for model variants with
a larger input size of 384×288. For instance, WTPose-L
achieves an AP of 77.56 at 384×288, surpassing Swin-L by
1.26 points, while maintaining higher precision for medium
and large object detection.

In addition to accuracy improvements, WTPose achieves
a balance between model size and computational com-
plexity. While achieving superior performance, WTPose
models maintain competitive parameter counts. For ex-
ample, WTPose-T has 30.0M parameters, which is 2.8M
fewer than Swin-T, while delivering a higher AP. Similarly,
WTPose-B and WTPose-L show slight parameter reduc-
tions compared to their respective Swin variants while con-
sistently outperforming them across all evaluation metrics.
This reduction is achieved through the compact WTM mod-
ule in WTPose, which operates on high-resolution feature
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Figure 4. WTPose-Base examples from the COCO dataset.

Stem + ResNet BN Model Waterfall Input Size Dilation AP AR
- Swin-B - 256×192 - 73.72 79.32
✓ Swin-B WTM 256×192 (1), (1), (1), (1) 74.46 79.99
✓ Swin-B WTM 256×192 (2), (4), (6), (8) 73.79 79.35
- Swin-B WTM 256×192 (2,1), (4,1), (6,1), (8,1) 74.61 80.02
✓ Swin-B WTM 256×192 (2,1), (4,1), (6,1), (8,1) 74.96 80.51
- Swin-B - 384×288 - 75.81 80.99
✓ Swin-B WTM 384×288 (1), (1), (1), (1) 76.27 81.42
✓ Swin-B WTM 384×288 (2), (4), (6), (8) 76.01 81.24
- Swin-B WTM 384×288 (2,1), (4,1), (6,1), (8,1) 76.78 81.54
✓ Swin-B WTM 384×288 (2,1), (4,1), (6,1), (8,1) 77.18 82.13

Table 2. Results using different versions of WTPose on MS COCO validation dataset. All the models use Swin-B transformer as backbone.
Stem + ResNet BN represents the Stem + ResNet bottleneck added at the initial layer of Swin and Waterfall indicates the use of the waterfall
transformer module.

maps and requires only a single deconvolutional layer at de-
coder. In contrast, the vanilla Swin Transformer produces
low-resolution heatmaps, requires multiple deconvolutional
layers to recover the full resolution for pose estimation.

However, the accuracy gains of WTPose come with a
trade-off in computational complexity. The majority of the
WTM module is composed of transformer layers, which
are computationally more expensive than convolutional lay-
ers. As a result, WTPose requires approximately 6 GFLOPs
more at an input size of 256×192 and 15 GFLOPs more
at 384×288 compared to Swin across all variants. Never-
theless, this increase in computational cost is justified by
WTPose’s consistent performance improvements across all
evaluation metrics.

The higher computational complexity of WTPose is fur-
ther justified when compared to Swin’s larger model vari-

ants. For instance, at an input size of 384×288, our
WTPose-B is approximately 56% smaller in model param-
eters and 37% less complex than Swin-L, yet still outper-
forms Swin-L by 0.88% in AP and 0.63% in AR. Similar
trends are observed across all variants and input sizes. Fur-
thermore, WTPose-T achieves comparable results to Swin-
L, with significantly smaller model size and lower compu-
tational complexity. The waterfall transformer module en-
hances the feature maps, improving the accuracy of key-
point detection. Examples of pose estimation for subjects
from COCO dataset are shown in Figure 4.

4.5. Ablation Study

We performed ablation studies to investigate individual
components of WTPose. Table 2 shows results with var-
ious configurations using the Swin-B backbone and under
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two input image sizes. We set WTM to have four Wa-
terfall Transformer Blocks, with each block comprising a
cascade of two transformer layers. These layers learn both
global and local attention by employing a combination of
dilated and non-dilated self-attention mechanisms. Each
transformer layer uses a window size of 7×7 and performs
multi-head self-attention with 8 heads.The dilation rates are
varied to expand the receptive fields across different WTB
blocks. We performed our analysis with dilation rates 1, 2,
4, 6, and 8, producing receptive field sizes of 7×7, 13×13,
25×25, 37×37, and 49×49, respectively.

First, we experimented with dilation rates of (1), (1),
(1), (1) for each WTB, which involved performing a sin-
gle non-dilated multi-head self-attention at each WTB. This
configuration showed slight improvements over the baseline
Swin-B backbone for both input sizes. Next, we used only
dilated multi-head self-attention mechanisms for each WTB
and set the dilation rates as (2), (4), (6), (8) for each WTB.
Surprisingly, this configuration yielded minor gains, lower
than those observed with the non-dilated transformer layers.
Next, we combined both dilated and non-dilated multi-head
self-attention mechanisms for each WTB and set the dila-
tion rates as (2, 1), (4, 1), (4, 1), (8, 1) for successive WTBs.
This configuration resulted in significant performance gains
of 1.24% and 1.37% in terms of AP for smaller and larger
input sizes, respectively. Similar improvements were ob-
served for AR metrics. All the above WTPose architec-
tures used a modified Swin backbone. To isolate the per-
formance gains due to WTM, we incorporated WTM into
the vanilla Swin transformer backbone. This configuration
demonstrated gains of 0.89% and 0.97% in terms of AP for
smaller and larger input sizes, respectively.

Our main observations are (i) integrating the waterfall
transformer module with the modified Swin backbone im-
proves the feature representations, and (ii) adding a Stem
and ResNet Bottleneck at the start of the Swin-B further
enhances the backbone’s capability.

5. Conclusion
In this work, we introduced WTPose, a novel Water-

fall Transformer framework for multi-person pose estima-
tion. WTPose incorporates our proposed waterfall trans-
former module, which efficiently processes multi-scale fea-
ture maps extracted from various stages of the Swin trans-
former backbone. By utilizing a carefully designed cas-
cade of dilated and non-dilated attention blocks, WTPose
expands the receptive field, enabling the model to capture
both fine-grained local details and broader global context.

With the modified Swin-B backbone and the WTM,
WTPose achieves superior performance compared to other
Swin-based models. Additionally, WTPose features a scal-
able and flexible architectural design that can be seamlessly
integrated with other transformer-based backbones. This

adaptability makes WTPose a valuable framework for ad-
vancing state-of-the-art pose estimation methods, particu-
larly in real-world applications where precision and com-
putational efficiency are critical.
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