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Abstract

Multi-camera tracking plays a pivotal role in various
real-world applications. While end-to-end methods have
gained significant interest in single-camera tracking, multi-
camera tracking remains predominantly reliant on heuris-
tic techniques. In response to this gap, this paper in-
troduces Multi-Camera Tracking tRansformer (MCTR), a
novel end-to-end approach tailored for multi-object detec-
tion and tracking across multiple cameras with overlap-
ping fields of view. MCTR leverages end-to-end detectors
like DEtector TRansformer (DETR) to produce detections
and detection embeddings independently for each camera
view. The framework maintains set of track embeddings
that encaplusate global information about the tracked ob-
jects, and updates them at every frame by integrating the
local information from the view-specific detection embed-
dings. The track embeddings are probabilistically asso-
ciated with detections in every camera view and frame to
generate consistent object tracks. The soft probabilistic as-
sociation facilitates the design of differentiable losses that
enable end-to-end training of the entire system. To vali-
date our approach, we conduct experiments on MMPTrack
and Al City Challenge, two recently introduced large-scale
multi-camera multi-object tracking datasets.

1. Introduction

Object tracking has long been a central challenge in com-
puter vision attracting substantial attention in the research
community due to its applicability in numerous real-world
applications. While the majority of the research efforts
have concentrated on multi-object tracking in single cam-
era video feeds, there has been a rising demand for multi-
object multi-camera tracking due to the increasing preva-
lence of multi-camera systems deployed in diverse applica-
tions such as security, monitoring, or sports analytics. In
these applications multi-camera setups offer a multitude of
advantages over single-camera counterparts, including in-
creased coverage, reduction of blind spots and heightened
tracking robustness, particularly in scenarios involving de-
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tection failures or prolonged occlusions.

The predominant approach to multi-camera tracking thus
far has revolved around heuristic techniques, which amalga-
mate various components such as person re-identification,
single-camera tracking, homography estimation, and clus-
tering. These techniques have demonstrated commendable
performance; however, they are inherently heuristic, and
their performance often hinges on the effectiveness of hand-
crafted rules and the quality of heuristics used. Recently,
the application of transformer-based algorithms to tracking
has received significant attention [5,31,42,52,57] due to
their ability to encapsulate the entirety of the tracking pro-
cess within a unified, end-to-end framework. However, this
transition toward end-to-end tracking primarily applies to
single-camera scenarios. In the domain of multi-camera
tracking, particularly when dealing with highly overlapping
camera views, there has been little work in this direction.

In this paper, we propose the Multi Camera Tracking
tRansformer (MCTR), a novel approach to multi-camera
multi-object tracking that adopts an end-to-end architec-
ture to track multiple objects across multiple camera feeds.
MCTR builds on end-to-end object detection models such
as DETR (DEtections TRansformer) [7], adding two new
components to facilitate multi-camera tracking: a tracking
module and an association module. The flow of MCTR is
conceptually simple: the object detectors are independently
applied on every camera feed to generate view-specific de-
tections and detection embeddings; the tracking module
maintains a set of track embeddings and updates them us-
ing the information in the view-specific detection embed-
dings; and the association module generates an assignment
of detections to tracks based on the respective detection and
track embeddings. The model is trained end-to-end using
a new loss formulation. This approach offers a more prin-
cipled solution to multi-camera tracking, reducing the re-
liance on heuristic components and integrating the entire
tracking process into a coherent, data-driven framework.

Multi-camera tracking introduces additional complexity
over single-camera tracking as track consistency needs to
be maintained both across time and across camera views.
This makes it difficult to directly extend single-camera tech-
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niques, that generally depend on the assumption that a track
may only be associated with a single detection at every time
step, like, for example, those employed by MOTR [52]
which use the track embeddings as detection queries that
are iteratively updated by DETR. Instead, MCTR maintains
a separate set of track embeddings that encapsulate global
information about the tracked objects across all views, and
are distinct from the DETR object embeddings, which en-
capsulate local, view-specific information.

As is the case with all transformer-based models, the
track embeddings as well as the detection embeddings do
not have a particular order, and, thus, do not have a fixed
relation with ground truth labels. This makes it challeng-
ing to devise a loss for training the model. DETR solves
this issue for object detection by first finding the best as-
signment of detection embeddings to ground truth annota-
tions using the Hungarian algorithm [25], and then com-
puting classification and detection losses based on this as-
signment. MOTR and other approaches extend this idea to
single-camera tracking by forcing each track query that has
been previously associated with a ground truth object to
keep detecting the same object in future frames. It is un-
clear, however, how to extend this procedure to keep track
assignments consistent not only across time, but also across
camera views. Furthermore, this approach is highly depen-
dent on having a good association between detections and
ground truth in the first frame, as it can not be changed in
subsequent frames. In this paper we take a different ap-
proach to devise a training loss that avoids these issues. To
calculate view-specific classification and detection losses
we follow DETR’s approach and use the Hungarian algo-
rithm in every frame and camera view independently to lo-
cally associate detections with ground truth. To maintain
global tracking consistency, we use an approach akin to the
attention mechanism in scaled dot-product attention to gen-
erate probabilistic assignments of local detections to global
track embeddings. For pairs of detections in different cam-
eras or different frames we calculate the probability, under
the model, that the detections belong to the same track by
integrating over the track assignment. We then use a neg-
ative log-likelihood loss to train the model to assign high
probabilities to detection pairs from the same ground truth
track and low probabilities to pairs from different tracks.

In summary, our contributions are: 1) An end-to-end
framework for tracking multiple objects in multiple cam-
eras with overlapping fields of view, 2) A method for prob-
abilistic association of detections to tracks that is fully dif-
ferentiable w.r.t input RGB frames, and 3) The formulation
of a specialized loss function designed to guide the model in
preserving consistent object identities, both temporally and
across diverse camera perspectives.

The primary objective of this study is to test the feasi-
bility of employing transformer-based end-to-end architec-

Figure 1. Example of multi-camera frame from the MMPTrack
dataset with 6 camera angles.

tures within the realm of multi-camera multi-object tracking
problems. Our aim is to demonstrate the potential viability
of such techniques and their applicability to these complex
scenarios. We anticipate that our findings will inspire fur-
ther exploration and research in this direction, potentially
unlocking the full capabilities of these models in the future.

2. Related Works
2.1. Single Camera Tracking

Multi-object tracking within a single-camera setup has
been extensively studied. Tracking by detection approaches
[6, 27, 40, 46, 54] utilize object detectors [11, 15, 36], to
identify objects in individual frames and perform track as-
sociation using Kalman Filter [45] or Hungarian Match-
ing [25]. Recently, end to end tracking methods such as [5,

,42,51,52,55-57] have emerged, extending query based
object detection for tracking [7]. For example, MOTR
[52], MOTRv2 [55] and TrackFormer [3 1] propagate track
queries across frames, iteratively updating them with image
features for long-term detection and tracking. TransTrack
[42] and P3Aformer [56] utilize a location-based cost ma-
trix for bipartite matching [25]. In contrast to tracking by
detection methods, end-to-end tracking methods are data-
driven and avoid dependence on handcrafted heuristics. De-
spite their effectiveness, single-camera tracking encounters
challenges, especially in cluttered and crowded environ-
ments with occlusions. The reliance on a single viewpoint
limits the system’s robustness in complex scenarios. To al-
leviate this, we extend the tracking by query propagation
paradigm for multi-camera multi-object tracking.

2.2. Multi-Camera Tracking

The multi-camera tracking (MCT) domain has witnessed
diverse methodologies to tackle challenges in complex
surveillance environments. A prevalent strategy involves
a distributed approach, where single-camera tracking pre-
cedes hierarchical clustering [32], non-negative matrix fac-

875



torization (NMF) [44], or other merging and association al-
gorithms for tracklets [4, 8,20,23,24,26,35,39,41,47,48].
Alternatively, global or centralized methods bypass single-
camera tracking, focusing on detecting individuals in each
camera view and subsequently globally associating detec-
tions into tracklets [29,49]. Occupancy maps derived from
multi-camera views have been explored [12,50], and trajec-
tory prediction is employed in certain works, with variations
in global or distributed approaches for multi-view associa-
tion [22,49]. Iguernaissi et al. [21] provides a comprehen-
sive survey of the MCT papers.

Notable contributions in MCT include TRACTA [20],
utilizing RNMF for cross-camera tracklet matching, and
DMCT [50], incorporating a perspective-aware Ground-
Point Network, occupancy heatmap estimation, and a
glimpse network for person detection and tracking. Re-
cently, ReST [9] proposed a two-stage association method
using a reconfigurable graph model. In the vision-based
autonomous driving systems domain, efforts focus on
multi-view 3D object tracking, building upon end-to-end
multi-view 3D object detection methodologies [10, 43].
Works such as MUTR3D [53], PF-Track [34], ViP3D [16],
and DQTrack [28] utilizes a 3D track query-based ap-
proach for coherent object tracking across multiple cameras
and frames. DQTrack [28] introduces a decoupled-query
paradigm for camera-based 3D multi-object tracking, and
ViP3D [16] pioneers a fully differentiable trajectory predic-
tion approach. PF-Track [34] emphasizes spatio-temporal
continuity.

In our approach, we conduct global track association for
detections in each individual view, departing from single-
camera tracklet-to-tracklet association. Diverging from
existing global association methods, our fully end-to-end
trainable framework based on transformers avoids heuris-
tics or handcrafted pipelines for data-driven learning. Our
track association loss is fully differentiable and trained end-
to-end, similar to 3D object tracking. However, we focus
on 2D person tracking across overlapping cameras.

3. Method

In this section, we provide a detailed description of the
architecture of the proposed model. Figure 2 offers an
overview of our model, highlighting its key components and
their interactions.

The system consists of a detection module, a tracking
module, and an association module. The detection module
operates independently for each camera view and generates
a set of detection embeddings. These embeddings encapsu-
late essential information regarding object detections within
each individual view and are used to generate a bounding
box prediction, a class prediction, and to inform the down-
stream modules. The tracking module maintains a set of
track embeddings. The track embeddings contain global in-
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formation about each object and are used to maintain con-
sistent and coherent object identities across camera views
and time. The track embeddings are updated at each frame
using the information in the detection embeddings from all
the camera views. The association module is tasked with
producing a probabilistic assignment of detections to iden-
tities based on the information in the respective track and
detection embeddings.

3.1. Detection Module

In this paper we employ a vanilla DETR (DETection
TRansfomer) for the detection module, but any other end-
to-end detector architecture can be used. A DETR model
operates independently on each camera view. Briefly, the
architecture of the DETR model includes a backbone to
extract image features and a transformer encoder and de-
coder. The spatial features at the output of the backbone
are added to a positional encoding and input to the encoder
transformer which performs self attention and outputs a set
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of spatial features. The DETR transformer decoder takes a
set of detection query embeddings as input and outputs a set
of detection embeddings. Each of the output embeddings
are then passed through an MLP to predict the object class
(or a ’no object” class) and its bounding box. An overview
of DETR is shown in figure 3. For more details see [7].

3.2. Tracking Module

The tracking module is tasked with updating the track
embeddings with information from all the camera views in
the current frame. The purpose of the track embeddings is to
maintain global information about the tracked objects. The
architecture of the tracking module is depicted in figure 4.

The track embeddings are initialised at the first frame
to learned “track query embeddings”. Like the “query in-
puts” to DETR, some of the embeddings will take on the
role of representing one identity over time and others will
remain unassigned. When a track embedding remains unas-
signed to a detection after a certain time, it is reset to it’s
initial embedding.To update the track embeddings with de-
tections from each camera, the cross-attention section has
a set of multi-head cross-attention modules tailored to each
camera view, with each module computing cross-attention
between the current track embeddings and the detection em-
beddings from the corresponding view. The track embed-
dings act as “queries”, and detection information as “’keys”
and “values”. Because the relationship between objects and
tracks depends on the camera position, each cross-attention
module has its own distinct parameters (i.e. there is no pa-
rameter sharing between the cross-attention modules corre-
sponding to the different views). The outputs of all the view
specific cross-attention modules are averaged and passed
through self-attention and feed-forward layers to obtain up-
dated track embeddings.

The self-attention module in the tracking module is in-
tended to introduce competition between the track embed-
dings. If one track query ’claims’ a particular identity
strongly, other track queries can “observe” this and are en-
couraged not to take on the same identity through the atten-
tion mechanism. This is similar to the way self attention
works in the decoder for DETR to discourage 2 query em-
beddings from claiming the same output detection.

3.3. Association Module

The association module, depicted in figure 5, produces
a probabilistic assignment of detections to tracks. The as-
signment is performed independently for each camera view
through a mechanism that is the same as the attention mech-
anism in scaled dot-product attention, wherein the detec-
tions act as queries and tracks act as keys. The detection
embeddings and track embeddings undergo a linear trans-
formation, followed by the multiplication of the the result-
ing matrices. Similar to scaled attention, the result is scaled
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by the square root of the embedding dimension before ap-
plying a row-wise softmax operation. The resultisa D x T
matrix A” where each entry A}, represents the probability
that detection d is associated with track ¢ in view v. D is the
number of detection queries while 7" is the number of track
queries.

3.4. Training Loss

To train the model we use several loss functions, that we
group into detection losses, track losses and auxiliary track
losses.

Detection loss. The detection loss, L 4., is the same as
the one used used by [7] to train DETR: a combination of
negative log-likelihood classification loss, an IOU loss and
a GIOU loss. Given ground truth annotations, Hungarian
matching is used to find the bipartite assignment of detec-
tions to ground truth that incurs the lowest loss. This loss
is used as a detection loss for each view. Following [7] we
also use losses calculated at different layers of the DETR
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transformer decoder as auxiliary losses, Liet_qusz-

Track losses. The track losses enforce consistency of
object identity between camera views and camera frames.
Given two detections d; and d» from two different views
v1 and v, the probability, according to the model, that dy
and ds belong to the same track ID can be calculated by
integrating over tracks:

Py (dyi,d2) = Z A AL
t

where A”* and A2 are the probabilistic assignment ma-
trices for views v1 and v, calculated by the association mod-
ule. (See section 3.3.)

To obtain a label, y4:(dy, d2), for a pair of detections, we
leverage the detection to ground truth assignment provided
by the Hungarian matching algorithm described above. We
have three possible cases: 1) both d; and d» are associated
with a ground truth annotation, and both ground truth anno-
tations have the same track ID. In this case yg:(d1,d2) = 1;
2) both d; and ds are associated with a ground truth anno-
tation, but both ground truth annotations have the different
track IDs. In this case ys:(dy, d2) = 0; and 3) either d; or
ds is not associated with any ground truth annotation. In
this case yg¢(d1, d2) is undefined.

The loss Laceross.cam 18 the negative log-likelihood of
the labels ¥, when they are defined:

1
Eacross,cams = - Fp dEd: (yst (dh d2) . log(Pst (dlv dZ))
1,d2

+ (1 = yse(d1, d2)) - log(1 — Pyy(dy, da2)))

where the sum is taken over pairs of detections d; and ds
from different camera views in the same frame, for which
yst(di, dz) is defined. N, is the number of such pairs.

Similarly, one can define Locross_frames by taking pairs
of detections from the same camera view and different
frames.

Auxiliary track losses. The probabilistic formulation
of the assignment of detections to tracks enables the defini-
tion of auxiliary losses to encourage learning of more infor-
mative track embeddings. For example one can induce the
track embeddings to encode information about the bound-
ing boxes of corresponding object in all camera views. To
achieve this the track embeddings are passed, for each view,
through a three layer MLP with ReLU nonlinearity to pre-
dict the coordinates B(t, v) of the bounding box for the re-
spective track ¢ in view v. The MLPs are view specific,
since an object position would be different in different cam-
era views. The track IOU loss is:
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Figure 6. Effect of training protocol.

where the third sum is taken over all detections d that
have been associated with a ground truth annotation by
Hungarian matching for that view, B(d) is the bounding
box of that ground truth annotation, and Loy is the IOU
loss. Similarly one can define L4k crou by replacing the
10U loss with the generalized IOU loss [37].

While the bounding boxes predicted from the track em-
beddings are not as accurate as the ones predicted from the
detection embeddings, the auxiliary track losses serve an
important role in ensuring consistency of object identities.

The final loss used to train the entire system end to end
is:

L= Ldet + Ldet,auw + Eacross,cams + ‘Cacross,frames

+ EtrackJOU + £track,GIOU

3.5. Training Protocol

The training proceeds based on contiguous video seg-
ments which are sampled randomly from the training data.
The video segments are split into non-overlapping four
frame clips, with each clip serving as a training instance.
At the beginning of the video segment the track embeddings
are set to an initial embedding (which is learned). For each
subsequent clip, the track embeddings are initialized with
the final track embeddings from the previous clip.

Multi-camera tracking applications usually require sys-
tems to run continuously, and track targets over time spans
of minutes or tens of minutes. This creates challenges for
training an end-to-end system: if training is done only over
short video segments, the mismatch between training and
deployment conditions introduce a domain shift that may
lower the performance. On the other hand, if training is
performed over long video segments, the model would see
very correlated data that lacks diversity and would tend to
overfit to it. To address this problem we propose the follow-
ing training protocol.

For the first thirty epochs the video segments are short,
four frame clips. This stage of training is used to ensure that
the model sees diverse data, which is especially important
for the detector models. After this initial stage, the parame-
ters of the detector model are frozen and the training of the
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tracking and association modules continues on increasingly
longer video segments. The length of the video segments
is randomly chosen from a geometric distribution with the
expected value increasing linearly as training progresses.
Figure 6 shows the benefit of this training protocol. As
the length of the training video segments increases, perfor-
mance on the test data improves, especially for the IDF1 and
HOTA metrics which emphasize long term tracking accu-
racy. For MOTA score (which emphasizes detection accu-
racy) the performance remains relatively constant. For com-
parison, if the the training video segments are kept short,
the IDF1 and HOTA metrics do not improve significantly,
showing that the increase in performance is due to the de-
vised training protocol, not simply due to extra training.

3.6. Inference

Inference on test data are made frame by frame in an
online manner. In each view v, detections that have a pre-
dicted confidence above a threshold (0.9 for experiments in
this paper) are kept and the rest are discarded. Then the
Hungarian algorithm, with predicted association matrix A"
as the weight function, is used to find a bipartite matching
between detections that have not been discarded and tracks.
This aims to associate detections with tracks in a way that
maximizes the total association probability. If a track has
not been associated with any detection for more than four
frames, its embedding is reset to the initial embedding. All
other track embeddings remain the same.

Figure 7 shows the memory and time MCTR uses for
inference as a function of the number of cameras. Both in-
ference time and memory scale linearly with the number of
cameras. With 1 camera, the model has about 44M parame-
ters and takes 233Mb of memory and can run at 21 FPS on a
single GeForce RTX 2080 Ti GPU. Each additional camera
adds 1M parameters, 68Mb of memory and reduces the FPS
by about 2. Thus MCTR would be well suited for real-time
multi-camera tracking applications.

4. Experimental Results

We contrast MCTR with the single-camera end-to-end
tracker MOTR [52], when the later is applied to each cam-

era view independently. | We also compare with ReST [9],
a recent multi-stage multi-camera tracking approach. When
using a pre-trained YOLO detector ReST is unable to main-
tain track identities over longer time frames leading to very
low performance on our evaluation datasets. This highlights
the shortcomings of multi-stage methods that require signif-
icant effort to ensure that all of the heuristic components are
well tuned for the dataset. In contrast, end-to-end methods
require much less manual tuning, learning to adapt to the
characteristics of each dataset. To gauge tracking perfor-
mance of ReST, with an ideal detector, we also report re-
sults for ReST when using the ground truth bounding boxes
as detections (ReST-GT).

MOTR is trained on each camera view and scene us-
ing the default parameters suggested by the authors. Dur-
ing testing we discovered an interesting failure mode for
MOTR. It tends to produce large number of highly over-
lapping duplicate detections and consequently tracks. This
adversely affects the detection precision resulting in lower
scores across all metrics especially MOTA [3]. To fix the is-
sue, we apply non-maximum suppression (NMS) and filter
boxes with high overlap using an IoU threshold of 0.95.

The models are evaluated using popular metrics in
single-camera multi-object tracking literature: HOTA [30],
IDF1 [38] and MOTA [3]. The metrics are computed in-
dependently for each camera view and test clip, and the re-
sults are averaged to get the final performance for each en-
vironment. This is similar to the protocol used in the MMP-
Tracking challenge [2]. For MCTR and ReST we evaluate
the cross-view association performance using the AIDF1
and MOAA metrics as proposed in [13, 17, 18]. AIDFI is
the association Fj score calculated as the geometric mean
of precision and recall of predicted pairwise object associ-
ations averaged across all frames and all pairs of camera
views. MOAA (Multi Object Association Accuracy) fol-
lows the calculation of MOTA, but ID switches are mea-
sured across all pairs of views rather than across frames.

4.1. MMPTrack dataset

MMPTrack [19] is a large scale multi-camera multi-
person tracking dataset comprised of five environments: in-
dustry, retail, cafe, lobby and office. The data is densely
labeled with the help of RGBD cameras and verified and
corrected by human labelers.

One artifact of the way the MMPTrack annotations have
been collected is that ground-truth bounding boxes are
given for all views, even if the person might be fully oc-
cluded in a particular view. In most environments occlu-

'While the performance of MOTR may be improved by using pre-
trained object detectors to generate detection queries, as in MOTR v2 [55],
the same techniques are equally applicable to MCTR. In fact MCTR can
be used directly with detectors such as YOLO foregoing DETR altogether.
However, this would distract from the goal of understanding the behaviour
of end-to-end approaches.
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Figure 8. Results on MMPTrack dataset.

sions are rare, making it less problematic. In the retail set-
ting, however, a large fraction of people are occluded by
shelves. Training a detector with these annotations would
be ambiguous and lead to lower performance. To mitigate
this issue, we filter out annotations of occluded persons: we
employ a pre-trained YOLOX model [14] to detect people
in each frame, and ground truth annotations with a lower
IOU than 0.01 with a YOLOX detection are filtered out.
While this approach may eliminate annotations for visible
people that are undetected by YOLOX, it serves as a reason-
able approximation. The models are evaluated on the origi-
nal labels, so low recall is expected in this environment.

Figure 8 shows the performance of MCTR, MOTR,
ReST and ReST-GT ( ReST with ground truth bounding
boxes) on the validation clips from the five MMPTrack en-
vironments . These results represent averages across var-
ious cameras and clips. MCTR outperforms ReST and
MOTR across all environments and metrics, showcasing the
effectiveness of end-to-end methods for multi-camera track-
ing. Its higher IDF1 and HOTA scores highlight MCTR’s
ability to use multi-view cues to handle occlusions and
maintain consistent long-term tracks. Compared to ReST-
GT, MCTR performs better on the HOTA and IDF1 met-
rics, showing that even with a perfect detector, ReST tempo-
ral tracking performance is lower than MOTR. On MOTA,
MOAA and AIDF1, which weight detection accuracy more
heavily, ReST-GT performs better than MCTR due to its
perfect detector.

As mentioned above, in the retail environment there are
a large number of ground-truth detections that are occluded
in any particular camera view resulting in a significant num-
ber of missed detections. While a person might be occluded
in one or more camera views, it is usually visible in at least

2ReST-GT inference did not finish on the Retail environment, and
ReST did not finish on Lobby environment

one camera allowing MCTR the opportunity to detect that
person. As discussed in section 3.4 MCTR is trained to
predict bounding boxes for all views based on the global
track embeddings. While these bounding boxes are pri-
marily utilized for computing an auxiliary loss to enhance
model training, they can be also used to predict bounding
boxes for occluded people that can not be detected by the
view-specific detector. When using the track-level bound-
ing boxes for prediction (denoted as MCTR-TB in figure 8),
the performance improves significantly on the retail envi-
ronment, mainly driven by an increase in recall from 54.28
to 88.73. This is remarkable, because the model has not
seen any ground truth annotations in the occluded regions
during training. This suggests that the model has learned
an approximate geometry and is able to extrapolate it to re-
gions where it has not seen any training data. On the other
environments, the HOTA and IDF1 performance remains
similar, but there is a decrease in the MOTA score due to a
somewhat worse detection bounding box accuracy.

Besides the ability to predict the location of occluded
people, the auxiliary losses described in section 3.4 are in-
strumental in improving the long term tracking performance
of MCTR. Table 1 shows the performance, on the industry
environment, of MCTR with and without using the auxil-
iary loss. Training the model to predict detection bound-
ing boxes from the global track embeddings leads to sig-
nificant improvements in the tracking focussed HOTA and
IDF1 scores, with a slight decrease in the more detection
focused metrics.

To the best of our knowledge, state of the art perfor-
mance on the MMPTrack dataset has been achieved dur-
ing the MMP-Tracking challenge [2]. The highest MOTA
score on the leaderboard is 87, averaged across all five en-
vironments, and the highest IDF1 score is 88.18 [1]. Be-
sides using a plethora of engineered heuristics, both these
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Figure 9. Results on Al City Challenge dataset.

Table 1. Performance of MCTR with and without using auxiliary
losses for training

Model HOTA | IDF1 | MOTA | AIDF1 | MOAA
MCTR 71.81|80.21|91.19 | 94.52 | 90.39
MCTR-noaux | 68.00 | 75.26 | 92.11 | 95.00 | 91.30

Table 2. Comparison with top methods in the MMP-Tracking
challenge, camera view evaluation. The ranks MCTR would have
achieved for each metric are shown in parentheses.

Model IDF1 MOTA | Online | Camera parameters | FPS
Hikvision| 86.36 87 No Yes -
Alibaba 88.18 78 No Yes <1
MCTR [62.30(5)|81.01 (3)| Yes No 9

methods are offline (i.e. they can use information from the
future), and make heavy use of camera calibration parame-
ters. MCTR is online, and does not use camera parameters.
With a combined MOTA of 81.01 and a combined IDF1
of 62.30, MCTR would rank thrid in MOTA and fifth in
IDF1.> While the MOTA performance is respectable, there
is a large gap in the IDF1 performance. This indicates that
maintaining consistent tracking over a long period of time
is still challenging for an end-to-end method.

4.2. Al City Challenge dataset

We also evaluate on data from 2023 Al City Challenge
[33] Track 1, a synthetic dataset containing several indoor
scenes with multiple overlapping cameras. Because our ap-
proach requires the same camera setup for training and test
we deviate from the challenge setup, and instead use the first
70% of the clip for each scene for training and the rest of
30% for testing. We down-sample the resolution to 640x360
and use a 15 FPS frame rate.

Figure 9 shows the results for MCTR and MOTR on the
Al City Challenge dataset. * MCTR again outperforms
MOTR on IDF1 and HOTA metrics indicating improved
long-term tracking and robustness to occlusions. MOTR

30ur performance is measured on the validation set as we do not have
access to the test set. We assume that validation and test performances are
comparable.

4We do not run ReST on this dataset because of its poor performance
on MMPTrack, and the lack of ground truth camera calibration parameters
which are required by ReST.

on the other hand tends to have better MOTA score, mainly
due to a higher detection precision and recall. The improved
detection performance of MOTR is likely due to their use
of deformable DETR [58] which is known to perform bet-
ter than standard DETR at detecting small objects, and to
a prevalence of highly occluded persons (e.g. only head is
visible behind shelves) in the dataset leading to a significant
number of small objects.

5. Conclusion & Limitations

In this paper we presented the Multi-Camera Tracking
tRansformer (MCTR) a novel architecture that integrates
detection and tracking across multiple cameras with over-
lapping fields of view in one coherent, end-to-end trainable
system. MCTR is build on three key ideas: using separate
track and detection embeddings, learning a probabilistic as-
sociation between tracks and detections, and using a loss
function based on the model’s prediction of pairs of detec-
tions belonging to the same track. MCTR outperforms end-
to-end single camera approaches on the MMPTrack and Al
City Challenge datasets, generating robust tracks that are
consistent across time as well as camera views.

Compared to highly optimized heuristic systems that
led the MMP-Tracking competition, MCTR does lag be-
hind, particularly in IDF1 score. The lower long-term per-
formance may stem from MCTR’s Markovian approach,
where track embeddings are updated only with current and
previous frame information. Early attempts to use longer
temporal history did not improve results. Finding better
ways to integrate more temporal and motion information
could enhance long-term tracking performance.

Another limitation of MCTR, and of end-to-end systems
in general, is the need for extensive labeled data for train-
ing. Moreover, MCTR’s reliance on camera-view specific
cross-attention modules means it is closely tied to the par-
ticular camera setup used during training. An interesting
question is whether a more general, camera setup indepen-
dent, end-to-end model can be devised. This could involve
using camera calibration parameters to adapt a single cross-
attention module for all views, rather than separate mod-
ules. We leave this direction for future work.
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