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Abstract

Deaths due to accidental falls is a pervasive issue across
the healthcare system, affecting both professional settings
such as hospitals and nursing homes as well as private resi-
dences where elderly people might live either alone or with-
out supervision during part of the day. With them being the
second leading cause of accidental deaths, just behind traf-
fic accidents, there is significant incentive to develop mea-
sures capable of reducing the impact of such accidents. An
accurate Fall Detection system presents itself as a viable so-
lution, whereas an automated video surveillance system is
capable of raising an alert when such an event occurs. For
such an approach to be commercially viable, it must both
have a high degree of accuracy and be trainable with easily
obtainable data. The first is necessary in order to reduce the
number of false positives, and thus not burden the health-
care personnel with false alerts. The second would make
it possible to implement the system without depending on
datasets available for research purposes only, nor requir-
ing a large time investment on creating a private dataset,
with the privacy concerns this entails.

We address this by introducing an Anomaly Detection
approach based on Bayesian Networks. Our approach mod-
els a given video frame based on the relationship between
simple features extracted from the image, and does not re-
quire any kind of private information nor class labels to
work. This makes our model both privacy-preserving and
with low data requirements. Furthermore, the model can
be trained in just a few seconds. We achieve results that far
surpass the current state-of-the-art when compared to other
unsupervised approaches.

1. Introduction

Falls are the second foremost cause of accidental death
worldwide according to the World Health organization [15],
with the likelihood of such events occurring increasing with
age and being particularly pervasive among elderly people.
Among said portion of the population, it is not only much
more frequent, but the likelihood of a fall leading to serious
injury or even death increases significantly. This is of par-
ticular concern to the healthcare system, where a series of
issues arise because of it. First is the issue of monitoring
large spaces such as hospitals and nursing homes, where it
is important to quickly react to any such events not only to
reduce the impact of such accidents, but also to reduce the
number of lawsuits placed on the hospital or staff. Another
point of concern are private residences, where elderly peo-
ple often live alone during part or most of the day. In such
cases where no one is available to provide help on short no-
tice, a monitoring system would be capable of alerting the
healthcare system to provide aid.

This issue has long been addressed by the Computer Vi-
sion community, but most such solutions have in place sev-
eral restrictions that make it extremely difficult to imple-
ment a commercially viable solution. This stems mainly
from the dependence of most models on labeled datasets,
where each frame is assigned a binary label according to
whether a fall is occurring or not. This poses a dual prob-
lem: On one hand, while such datasets are available for
research purposes, they are restricted for commercial use.
When implementing a commercial solution it then becomes
necessary to create a private dataset, with all of the pri-
vacy and labeling concerns this entails. On the other hand,
most modern approaches depend on deep neural networks
trained specifically to tackle Fall Detection. This results in
a large number of trainable parameters, necessitating large
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scale datasets to train the model without over-fitting.
We solve the first issue by introducing an unsupervised

classifier, making it possible to depend on unlabeled data
to train the model. This also allows for in-situ training of
the model: The video feed of the installed camera can be
directly used to train the model, further increasing the ac-
curacy by tailoring the model to the idiosyncrasies of the
space that is being monitored. The second issue is solved
through the use of off-the-shelf models to extract useful
features from the frame, which is then combined using a
Bayesian Network (BN). With BN being a type of proba-
bilistic model with a reduced number of parameters, it is
possible to drastically reduce the amount of data needed to
train the model.

2. Related works
Fall Detection as a Computer Vision problem has seen

significant interest over the years. Historically, approaches
have been based on measuring simple low-level indicators
such as head velocity [14, 18] and simple body shape and
motion measurements [8, 13]. In contrast, most modern ap-
proaches depend on the training or fine-tuning of various
Deep Neural Network architectures, resulting in models that
take a significant amount of time to train and cannot be eas-
ily adapted to specific scenes and camera angles. These can
be roughly separated into two main categories: Pose-based
and detection based.

Pose-based approaches can be considered as the succes-
sors of the more classical approaches, where more complex
features are used to measure body shape. These first de-
tect individuals in a scene and then extract their body pose.
Q. Xu et al. [16] use OpenPose as an off-the-shelf model
to detect individuals in a frame and extract their skeletons.
A classifier is then trained to predict whether the skeleton
configuration corresponds to the fall or non-fall category.
Similarly, S. Juraev et al. [5] follow the same pipeline but
using a transformer model. Each token encodes the body
pose captured at a given frame, with the output token em-
beddings being used to classify each frame as either fall or
non-fall. The same pipeline is followed by S. McCall et
al. [7], except for the transformer-model being pre-trained
on a general dataset of 2D poses and later fine-tuning it for
Fall Detection.

Detection based methods, on the other hand, approach
the task similarly to that of object detection, where a fallen
person is viewed as just another object instance. Mod-
els falling in this category essentially push the decision of
which features to consider relevant for the task to the object
detector, significantly reducing the need for model design
choices and increasing its flexibility at the cost of a higher
model complexity, training times and data requirements. A.
Bansal et al. [2] propose fine-tuning a Faster R-CNN archi-
tecture, pre-trained on the COCO dataset. Their model is

fine-tuned to propose bounding boxes for the various indi-
viduals in the scene, providing a score for fall and non-fall
instances. In essence, fall and non-fall instances are treated
as separate objects to be localized. A similar approach was
followed by Y. Ke et al. [6], but using a YOLOv5 detector
instead.

Note that in both cases supervised training is required.
This is not so for the method by J. Gonzalez et al. [3], the
most similar method to our own, which considers the prob-
lem from the point of view of Anomaly Detection. Said
approach trains a BN to model non-fall instances based on
simple features extracted using off-the-shelf models, such
as bounding boxes, relative location of the head and abso-
lute position of a person relative to the image plane. This
simple approach turns out to be extremely effective, achiev-
ing results on par with the state-of-the-art on the CAU-
CAFall dataset.

3. Proposed method

The proposed approach is based on BN, and more specif-
ically is an extension of the Fall Detection approach pro-
posed by J. Gonzalez et al. [3]. It can be considered as a
combination of classical and modern techniques, where on
one hand simple features are combined through a simple
probabilistic model to describe sample likelihoods, while
on the other hand complex deep architectures are used to
extract said features.

One of the main sources of inaccuracy in the original
approach is usage of the grid cell as a prediction target, re-
sulting in the marginalization of both aspect ratio and head
position during evaluation. Additionally, the 3D geometry
of the scene is ignored, overlooking one of the potentially
richest visual cues. Our main contributions are twofold, and
aim at addressing the above mentioned issues:

• Use state probability to estimate the fall score

• Introduction of depth information

The overall pipeline of the model can be seen in Fig. 1.
Similarly to the original approach, an off-the-shelf object
detector is used to extract the bounding box of individu-
als and their head locations. The candidate locations of the
person in the image are determined based on the overlap be-
tween the lower edge of their bounding box and a fixed-size
grid cell overlaid on the image. These features are explained
in more detail in Sec. 3.2. In addition, our model encodes
the 3D angle between the floor and an individual, as well as
the distance between them, through a combination of depth
estimation and segmentation. This is explained in more de-
tail in Sec. 3.1. Finally, Sec. 3.3 explains the changes to the
computation of the likelihood for an observation.
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Figure 1. Evaluation pipeline for the proposed approach. Depth feature extraction is introduced by our model, and consists of depth
estimation, object segmentation, and feature extraction through linear and SVD fitting of the point clouds of the individual and ground,
respectively. Extraction of bounding boxes, head location and absolute positioning are the same as in the original approach [3].

3.1. Depth information

Simple features such as the bounding box ratio and head
position provide limited information with regards to distin-
guishing some fall cases from certain camera angles, such
as falling forward or backward, from non-fall cases such as
sitting or crouching. As such, a significant improvement
to the original approach is the introduction of depth-based
features capable of distinguishing such cases. More specif-
ically, we compute two pieces of information: the angle of
an individual relative to the ground plane, and the distance
between the ground and the centroid of the individuals point
cloud. These are illustrated in Fig. 2

In order to extract these two variables, we use an off-
the-shelf monocular depth estimator (Depth Anything V2
[17]) to estimate a depth map of the image. We then use
the Grounded SAM pipeline [12], consisting of Grounding
DINO 1.5 [11] and Segment Anything V2 [10], to obtain
the bounding boxes of individuals and their heads, as well
as the pixel segmentation of both individuals and the ground
plane. The segmentation information is then combined with
the depth map in order to obtain the point cloud of the indi-
viduals and ground plane.

We then calculate the centroid of each individual along
with the best fit 3D line through linear regression, which
corresponds to the main axis of the individual. The pa-
rameters of the ground plane are extracted through Singu-
lar Value Decomposition (SVD). The covariance matrix of
the point cloud corresponding to the ground plane is ex-
tracted and the two Principal Components of the distribu-
tion computed. These correspond to two orthogonal vectors
along the plane, from which the plane parameters are easily
obtained. With these intermediate variables extracted, we
obtain the two target parameters in the following manner:

Figure 2. Top: We extract three variables from the RGB informa-
tion of a frame. The bounding box of an individual (green box),
the head position (light blue dot) and the grid cells locations of
the bounding box (marked in orange). Bottom: We extract two
continuous variables from the depth information of a frame. The
distance between an individuals centroid (light blue dot) and the
ground plane (red area), and the angle θ between the individual
and the floor plane.

For the distance between the ground and the centroid of the
individual, we compute the distance between the centroid
and ground plane. For the angle between the individual and
ground plane, we first project the main axis onto the ground
plane, then compute the cosine similarity between the main
axis and said projection.

Finally, we condense both of those parameters into a sin-
gle discrete variable that serves as a node for the BN. To
do so, we first compute the multivariate normal distribution
of these two variables over all samples in the training set.
In order to assign a discrete value to a sample, we com-
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Figure 3. Multivariate normal distribution of the two variables
dependent on depth information, as well as the three categorical
values for the resulting categorical variable. White: PDF below
0.025. Yellow: PDF in between 0.025 and 0.5. Orange: PDF
above 0.5. Non-fall training samples are marked in blue and fall
test samples in red.

pute its Probability Density Function (PDF) based on the
extracted distribution, then threshold the probability based
on manually selected threshold values. In our experiments,
we obtained the best results for three discrete values with
thresholds at 0.025 and 0.5. These are outlined in Fig. 3
and correspond to the white, yellow and orange areas. Neg-
ative test samples are marked in red. Note that while this
distribution is not a precise classifier, with many false posi-
tive samples falling within the white low probability region,
those are for samples with a high angle or distance relative
to the ground. Such cases are easily identified by other vari-
ables in the BN, such at the aspect ratio of the bounding box
and head position.

3.2. Bayesian model

The overall model consists of a BN based on the ap-
proach by J. Gonzalez et al. [3]. The BN consists of five
variables, with the first four being the same as in the origi-
nal work. The connectivity between those is shown in Fig. 5
for both the original model and the one we propose. For
our model, we maintain the same logical relationship be-
tween variables and establish a logical relationship between
the depth-based variable and the aspect ratio and head po-
sition. This is due to the depth information encoding basic
information on the angle of the person, which is indirectly
reflected on the values for both the aspect ratio and head
position. The information encoded by each variable is the
following.

Scene is a categorical variable representing the scene be-
ing displayed. Each different scene or camera perspective

corresponds to a different value.
GridCell represents the grid cell to which the detected

individual is assigned. An input image is divided into a reg-
ular grid, with each cell corresponding to a different value
for the categorical variable.

AspectRatio represents the aspect ratio of the bounding
box for an individual. It consists of two possible discrete
values. Portrait when the height of the bounding box is
larger than its with, and landscape when the width is larger
than the height.

HeadPosition encodes the coordinates of the center of
the individuals head relative to the body. It is a categorical
variable with two possible values representing whether the
had position is either above or below the central point of the
body.

Depth encodes information on the orientation of the in-
dividual relative to the ground and the distance between the
individuals centroid and the ground. The information is ob-
tained and encoded according to Sec. 3.1.

3.3. State probability

The original approach determined the likelihood of a
sample belonging to a specific grid cell given the observed
values for the other nodes of the BN. Given that each obser-
vation can fall on a number of grid cells (each grid cell that
intersects with the lower border of an individuals bounding
box), the authors computed the probability of each of the
intersecting grid cells and then obtained the average proba-
bility.

Our approach, on the other hand, provides the grid cell
information as an additional input observation, computing
the overall probability of the BN state for each of the poten-
tial grid cells. The maximum probability is then kept as the
final probability score for the sample. These changes are
introduced due to two main reasons. Firstly, we are train-
ing the model as an anomaly detection approach, meaning
that only non-fall samples are available during training. As
such, the state probability of the BN given a sample repre-
sents how well said sample fits with the non-fall data distri-
bution. Secondly, given that any of the valid variable con-
figurations has a high probability, the sample itself follows
the training distribution. As such, taking the maximum state
probability is expected to be much more accurate than com-
puting the average.

4. Experimental setup

We consider two datasets for our experiments: CAU-
CAFall [4] and High-Quality Fall Simulation Dataset
(HQFSD) [1]. Both datasets are used for an ablation study
where we aim to determine how each of our two main con-
tributions, namely the use of state probability for anomaly
detection and the introduction of depth information, affect
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Figure 4. Samples from the CAUCAFall (top) and HQFSD (bottom) datasets, displaying various ADL and individuals. CAUCAFall
displays wide variations in lighting conditions, while HQFSD is recorder from multiple points of view and displays a wider array of ADL.

Figure 5. Left: BN used by the baseline model. Right: BN in-
troducing angular information on the individuals orientation and
distance between the ground and individuals centroid.

the overall performance of the classification model. Fur-
thermore, we perform a state-of-the-art comparison on the
CAUCAFall dataset.

4.1. Datasets

Two datasets are considered for our experiments, sam-
ples of which can be seen in Fig. 4. The CAUCAFall
dataset [4], a small-scale video-based Fall Detection dataset
consisting of video recordings of 10 subjects and consisting
of 7388 fall and 12366 non-fall frames. This is a posed
dataset where the subjects fall in different manners as well
as performing some simple daily activity actions. More
specifically, there are 5 types of falls (fall backwards, fall
forward, fall left, fall right, fall sitting) as well as 5 sim-
ple Activities of Daily Living (ADL) that might result in
false positive classifications (hop, kneel, pick up object, sit
down, walk). Regarding the individuals, there are varia-
tions in terms of age, height, gender and clothing. As for
the scene, it consists of a single indoors room recorded from
the same perspective using a HIKVISION IR camera in AVI

format at 23 frames per second (FPS). The space contains
occlusions and variations inn lighting conditions (natural,
artificial, night). We prioritize this dataset because it offers
a robust representation of various scenarios commonly en-
countered in hospitals, presenting realistic results obtained
from the experiments.

The second dataset is HQFSD [1]. Similarly to the pre-
vious one, this dataset consists of posed video recordings of
10 different subjects both performing ADL and falling. It
consists of a total of 55 fall and 17 ADL scenarios recorded
within the same room using 5 different cameras placed at
different locations, for a total of 275 video recordings. The
recordings are of variable length, spanning between 0 : 50
and 4 : 58 minutes for fall sequences, and between 11 : 38
and 35 : 50 minutes tor ADL. The dataset varies in terms of
falling speeds, moving objects, subject ages, and the ADL
being performed right before the fall.

Contrary to the previous dataset, HQFSD is annotated
with the falling frames (from when someone loses balance
until they reach the ground), instead of the fall itself. We
re-annotate the dataset for Fall Detection by using the last
timestamp of the original annotations as the beginning of
the fall sequence, and manually annotate the end of the
sequence as the moment when the person stands back up
again. Our model is based on unsupervised learning, pre-
dominant in the field of Anomaly Detection, and there is no
standard partitioning for this dataset. Due to this, we choose
to split the dataset into a training partition consisting of the
ADL sequences, and a validation partition with all of the
fall sequences.

4.2. Evaluation metrics

We use multiple metrics when evaluating the perfor-
mance of our model. Accuracy is the most straightforward,
determining the overall classification accuracy of the model
given the classification threshold maximizing the number of
correctly classified frames on the overall dataset. A related
metric is the Area Under the ROC Curve (AUC). This met-
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ric represents the probability of the model ranking a posi-
tive sample higher than a negative one, given two randomly
chosen posive and negative samples. An ideal model would
have an AUC score of 1, while a completely random one
would have an AUC of 0.5. This metric is theshold agnos-
tic, and gives an impression of the overall discriminative
prowess of the model, as opposed of measuring the perfor-
mance for a given threshold like the accuracy metric does.

The problem of Fall Detection in video sequences can
also be seen from the perspective of object tracking, where
we aim to find the sequence of bounding boxes corre-
sponding to a person on the ground. For this kind of
problem two commonplace anomaly detection metrics are
the Region-Based Detection Criterion (RBDC) and Track-
Based Detection Criterion (TBDC) [9]. RBDC is a mea-
sure of the number of correctly detected anomalies in a per-
frame level, where a fall prediction is considered correct
if the intersection-over-union of the detected fall is grater
than a certain threshold. TBDC measures the detection of
anomalies over time, with the fraction of frames where the
anomaly is correctly detected must surpass a given thresh-
old.

Other metrics used during both the ablation study and
comparison with the state-of-the-art are those associated
with the statistical analysis of binary classification models,
namely: precision, recall, specificity and F1-score.

5. Results
As previously discussed, we propose two main improve-

ments over the original approach [3]. An ablation study is
shown in Tab. 1. From the results we can see that just by
computing the state probability of the sample, as opposed
to trying to predict the grid cell ID like the original work
did, we obtain a significant jump in accuracy of 6.04%. The
AUC and RBDC scores also increased by 2.3% and 0.21%
respectively. When looking at the individual samples, we
can see that most of that gain comes from the samples ’Fall
sitting’ and ’Fall forward’, both experiencing large jumps in
accuracy. On the other hand, other samples like ’Fall back-
wards (10)’ and ’Fall left (4)’ experienced a minor but sig-
nificant drop in accuracy despite their AUC score remaining
the same or even improving. This is due to the classifica-
tion threshold being selected at the global level and being
shared by all samples, meaning that the relative scores of
positive and negative frames might have actually improved
within that video, but not relative to all frames within the
full dataset.

When further introducing depth information to the
model, we obtain another significant increase of 3.33% on
the overall accuracy, with the AUC increasing by 0.34%
and RBDC marginally by 0.07%. At the individual sample
level, its interesting to notice that the individual accuracies
correspond to the maximum of either the original approach

and the one based on state probability, with there being fur-
ther marginal gains in therms of both AUC and RBDC. This
implies that the additional information mainly adds robust-
ness to the model as well as providing further gains in terms
of being capable of distinguishing between fall and no fall
samples: No-fall samples obtain higher likelihood scores
and those of fall samples decreases, resulting in a better
sorting of the samples that increases the AUC score, but
that doesn’t necessarily translate to higher accuracy gains.
While the overall response of the classifier has indeed im-
proved, the optimal threshold maximizing the overall clas-
sification accuracy retains the same performance. This is
further highlighted by the TBDC score, which remains un-
changed after introducing depth information. This implies
that while there is an increase on the number of correctly
classified frames, this does not translate to a higher number
of correctly classified fall sequences. In other words, most
of that improvement comes from better classifying individ-
ual frames on already correctly predicted fall sequences.

In Tab. 2 we compare our method against previous
works. We can see that our approach achieves state-of-the-
art results on CAUCAFall, outperforming both the previous
approach it is based on [3] as well as all other approaches
trained on said dataset, while still maintaining a competi-
tive speed. In fact, the results obtained approach the maxi-
mum possible accuracy, leaving little margin for future im-
provement. It is important to notice that our approach is
slower than other similar methods due to the complexity of
the feature extraction step. This is mainly due to the use
of Grounded SAM for instance segmentation. The model
could be heavily optimized by using a custom person and
floor segmentation model, which is something to consider
as future work.

The ablation of our model on the HQFSD dataset is
shown in Tab 3. This dataset is much more challenging
than the previous one, with multiple individuals occasion-
ally appearing on a single frame and some of the camera
views not always fully capturing the individual, which can
happen even during fall instances. This is reflected by the
much poorer overall performance on this dataset.

The use of the state probability score more significantly
increases the overall performance of our model, increasing
both the precision and specificity of the model even if that
comes at the cost of a slight decrease in recall. Overall,
it can be seen from the AUC score that the classification
model is much better behaved when compared to the base-
line. On the other hand, the addition of depth features pro-
vides a marginal increase to the performance of the model.
For the CAUCAFall dataset, we had already seen that the
bulk of the improvement in accuracy due to depth informa-
tion came from the additional features proving robustness
to the model, but no additional information capable of in-
creasing the model performance above that of the best pre-
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Original Method State probability Depth Information
Accuracy AUC RBDC TBDC Accuracy AUC RBDC TBDC Accuracy AUC RBDC TBDC

Fall left (4) 98.59 98.21 99.57 100 84.04 98.51 99.57 100 99.59 99.82 99.91 100
Fall backwards (4) 97.93 98.26 99.35 100 97.93 99.14 99.62 100 97.93 99.90 99.95 100
Fall backwards (10) 99.27 98.72 99.27 99.27 87.64 98.72 99.27 99.27 99.27 98.72 99.27 99.27

Fall right (1) 97.39 97.32 97.39 97.39 97.39 97.32 97.39 97.39 97.39 97.32 97.39 97.39
Fall sitting (2) 56.96 93.31 96.84 96.84 96.84 94.43 96.84 96.84 96.84 94.43 96.84 96.84
Kneeling (3) 100 - - - 95.33 - - - 100 - - -

Fall forward (4) 42.01 70.06 95.37 98.82 96.45 82.67 97.24 98.82 96.45 82.67 97.24 98.82
Sit down (5) 100 - - - 98.08 - - - 100 - - -

Pick up object (6) 98.52 - - - 98.03 - - - 98.52 - - -
Hopping (7) 100 - - - 100 - - - 100 - - -

Average 89.13 92.83 98.78 99.23 95.17 95.13 98.99 99.23 98.50 95.47 99.06 99.23

Table 1. Ablation of model performance between the original approach, our improved baseline using the state probability of the sample,
and our model further introducing angular information. Best results are marked in bold or underlined, with the results for the best overall
model marked in bold.

Figure 6. False positive prediction examples on the HQFSD dataset, displaying the two main failure modes of our model as seen from all
five camera angles. Top: Clipping of the individuals is one of the main sources of error. Bottom: Extreme body poses such as exaggerated
crouching and unusual sitting and crawling poses is also prevalent in the fall sequences of the dataset.

Accuracy Precision Recall FPS
Y. Ke et al. [6] - 82.20 76.10 71

A. Bansal et al. [2] 93.20 95.12 97.50 -
J. Gonzalez et al. [3] 90.33 91.84 92.45 23

Q. Xu et al. [16] 97.25 - 97.25 -
Ours 98.50 97.55 99.08 2

Table 2. Comparison with other state-of-the-art Fall Detection ap-
proaches on CAUCAFall. Best results are marked in bold, second
best are underlined.

AUC Prec. Recall Specif. F1
baseline [3] 69.38 66.64 99.53 43.57 79.83

state probability 80.12 68.28 96.14 49.42 79.85
depth 80.87 68.29 96.14 49.44 79.85

Table 3. Ablation study on HQFSD. Prec: Precision. Specif:
Specificity. Best results are marked in bold, second best are un-
derlined.

dictions of both previous models (baseline and probability
models). Similarly, the additional gains for this dataset are
also marginal.

Both the baseline model and our own to a lesser extent
suffer from low specificity. By looking at some visual ex-
amples of the failure modes, as seen in Fig. 6, we find two
main modes of failure in our model. First is the clipping
of individuals for a significant period of time, resulting in
incorrectly generated features such as bounding boxes and
depth-based distance and angular features. Second are some
extreme poses, such as exaggerated crouching and unusual
sitting poses. Such cases are difficult to distinguish with-
out using more complex features like body pose informa-
tion nor making use of temporal information in our model,
and result on a low specificity score.

6. Conclusion

In this work we have shown the feasibility of introduc-
ing summarized depth information to Bayesian Networks,
allowing us to outperform the previous state-of-the-art for
Fall Detection when compared to other Anomaly Detection
approaches. Not only do we surpass the previous state-of-
the-art on the CAUCAFall dataset by a wide margin, but we
do so with a simple model that can be trained in a matter of
seconds.
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This represents a significant milestone for potential com-
mercial applications of Fall Detection: The low parametric
complexity of the model means that the approach can be
trained on datasets of limited size, while the the usage of
Anomaly Detection makes it unnecessary to label the train-
ing data. Furthermore, given the simple, anonymous na-
ture of the extracted features, data can be stored for training
without needing to worry about privacy. This would allow
for training of the model by using data from the camera af-
ter installation, better adapting to that particular scene and
point of view.
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