
1. Supplementary Material

1.1. Implementation Details

For our industrial use cases we use an object-detection
model, specifically the state-of-the-art YoLo [4], to first ex-
tract the part of the document containing the signature. In
both use cases we trained an ad-hoc YoLo model to extract
the signature on the specific distribution of data. In gen-
eral, our trained YoLo models are capable to extract the
signatures with good performances. Nevertheless, a small
amount of errors from Yolo due to imperfect regions (e.g. a
part of the signature is not included in the region extracted
by YoLo) are included into our pipeline and can slightly af-
fect the performances of the signature verification. It is out
of the scope of this paper to evaluate the performance of the
YoLo models.

For all models, for the real-world use cases we perform
early stopping on the validation set, using the weights where
the validation set has the higher F1-score. Conversely, for
the validation on public datasets, we follow the experimen-
tal protocol described in [2] and we do not perform early
stopping: we train the models for 20 epochs and take the fi-
nal weights. In the following we report the implementation
details for all models.

1.1.1 SignatureMatching Model

We resize each grayscale image to 32× 256 pixels and nor-
malize pixel values to [−1.0, 1.0]. The image embedding
part is the encoder of ASTER [5] with a final bidirectional
LSTM with 256 hidden units, which produces an image em-
bedding of dimension 64 × 512. The encoder is initialized
with the weights of the pretrained text recognition model
and then fine tuned together with all other weights in the
overall architecture. On top of the matrix S we first ap-
ply 16 convolutional filters with kernel size 5 × 5, then a
max pooling operation with kernel size 5×5, and finally 32
convolutional filters with kernel size 5×5. With the config-
uration used in our experiments for the image embedding,
we obtain a final vector of 2048 features. The final 2-layers
FC module applied to the concatenation of the features is
composed by a first layer producing 512 output units, fol-
lowed by 0.5 dropout, then the last layer produces 2 output
units. We initialize the weights of the two convolutional lay-
ers and the final two FC layers with Xavier initialization [3].
The model is trained with mini-batch gradient descend with
0.001 learning rate and 0.9 momentum and batch size equal
to 128 in the cheque use case, and 0.005 learning rate with
0.9 momentum and batch size 16 in the contracts use case
and for public datasets. Every 20 steps the learning rate is
decreased by a factor γ = 0.1.

1.1.2 Siamese Model

For the siamese model we use as image encoder the
ResNet18 model pretrained on the ImageNet dataset [1]. To
do this, we use the weights provided by PyTorch1 1.6.0. The
final FC layer is replaced by a first FC layer with 1024 units
and a second FC layer with 128 units, and a dropout with
probability 0.5 between them. The weights of these two FC
layers are initialized with Xavier initialization [3]. The in-
put images are resized to 224×224 dimension and rescaled
to [0, 1], as originally done for the ImageNet dataset. The
model is trained with Adam optimizer, with learning rate
10−4 using fuzzy factor equal to 10−8 and weight decay
equal to 0.0005. The batch size is 128 in the cheque use
case and 16 in the contracts use case and for public datasets.
Every 20 steps the learning rate is decreased by γ = 0.1.

The model is trained with a contrastive loss fed with the
cosine distance between the two vector representations:

Ss = cos(emb(I1), emb(I2)) (1)

where emb(I1) and emb(I2) are the feature vectors com-
puted by the siamese model on the input images I1 and I2
respectively. The contrastive loss used is:

L = αl (1− Ss)
2 + (1− l)max{m− (1− Ss) , 0}2, (2)

where m is the margin and α balances between genuine and
forgery pairs.

1.1.3 SignatureMatchingR Model

We use as image encoder the ResNet18 model pretrained
on the ImageNet dataset [1], using the weights provided
by PyTorchpytorch 1.6.0. The input images are resized to
224 × 224 dimension and rescaled to [0, 1], as originally
done for the ImageNet dataset. The output of the fourth
layer are reshaped into 47 × 512 matrices. On top of the
matrix S we first apply 16 convolutional filters with kernel
size 5 × 5, then a max pooling operation with kernel size
4 × 4, and finally 32 convolutional filters with kernel size
5 × 5. We obtain a final vector of 1570 features. The fi-
nal 2-layers FC module applied to the concatenation of the
features is composed by a first layer producing 512 output
units, followed by 0.5 dropout, then the last layer produces
2 output units. We initialize the weights of the two con-
volutional layers and the final two FC layers with Xavier
initialization [3]. Training is done in the same way as for
the SignatureMatching model, using learning rate 10−4 and
batch size 128 in the cheque use case and 16 in the contracts
use case and for public datasets.

1https://github.com/pytorch/vision/tree/main/torchvision/models



Figure 1. FAR versus FRR for a real test set of the cheque use case.

1.1.4 SignatureSiamese Model

We resize each grayscale image to 32× 256 pixels and nor-
malize pixel values to [−1.0, 1.0]. The image embedding
part is the encoder of ASTER [5] with a final bidirectional
LSTM with 256 hidden units, which produces an image em-
bedding of dimension 64 × 512. The encoder is initialized
with the weights of the pretrained text recognition model
and then fine tuned together with all other weights in the
overall architecture. The image embeddings J1 and J2 are
flattened into vectors of dimension 64 ·512 = 32768. Then,
a small FC module is applied. The first layer produces in
output 1024 units, followed by dropout. Then, the final FC
layer outputs 128 units. The weights of these two FC layers
are initialized with Xavier initialization [3].

The model is trained with Adam optimizer, with learn-
ing rate 10−4 using fuzzy factor equal to 10−8 and weight
decay equal to 0.0005. The batch size is 128 in the cheque
use case. Every 20 steps the learning rate is decreased by
γ = 0.1. The model is trained with the contrastive loss in
Eq. (2) with m = 1 and α = 1.

1.1.5 Text Recognition Model

We employ as text-recognition model the available source
code of ASTER2 for the competitor and to initialize the im-
age encoder of the SignatureMatching models. ASTER is
initialized with the weights of the publicly available pre-
trained model. All hyperparameters are set to the default
values, except for the batch size set to 64, the height of in-
put images set to 32, and the maximum number of epochs

2https://github.com/ayumiymk/aster.pytorch

Figure 2. Configuration of ASTER model used in our experiments.

set to 35. The details of the architecture employed in our
experiments are depicted in Fig. 2.

1.2. Additional Experiments

In Fig. 1 we report the trade off between FRR and FAR
on a small real test set available for the cheque use case
for all models with real non matching pairs. Our proposed
SignatureMatching models are always below the other com-
petitors and are able to reach satisfactory performances,
with FAR lower than 2% and FRR lower than 20%.
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