SpliceRadar: A Learned Method For Blind Image Forensics

Aurobrata Ghosh, Zheng Zhong, Terrance E Boult, Maneesh Singh; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019, pp. 72-79


Detection and localization of image manipulations like splices are gaining in importance with the easy accessibility to image editing softwares. While detection generates a verdict for an image it provides no insight into the manipulation. Localization helps explain a positive detection by identifying the pixels of the image which have been tampered. We propose a deep learning based method for splice localization without prior knowledge of a test image's camera-model. It comprises a novel approach for learning rich filters and for suppressing image-edges. Additionally, we train our model on a surrogate task of camera model identification, which allows us to leverage large and widely available, unmanipulated, camera-tagged image databases. During inference, we assume that the spliced and host regions come from different camera-models and we segment these regions using a Gaussian-mixture model. Experiments on three test databases demonstrate results on par with and above the state-of-the-art and a good generalization ability to unknown datasets.

Related Material

author = {Ghosh, Aurobrata and Zhong, Zheng and E Boult, Terrance and Singh, Maneesh},
title = {SpliceRadar: A Learned Method For Blind Image Forensics},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2019}