
Learning to Generate Textures on 3D Meshes

Amit Raj

Georgia Institute of Technology

Cusuh Ham

Georgia Institute of Technology

Connelly Barnes

Adobe Research

Vladimir Kim

Adobe Research

Jingwan Lu

Adobe Research

James Hays

Georgia Institute of Technology

Abstract

Recent years have seen a great deal of work in photoreal-

istic neural image synthesis from 2D image datasets. How-

ever, there are only a few works that exploit 3D shape infor-

mation to aid in image synthesis. To this end, we leverage

data from 2D image datasets as well as 3D model corpora

to generate textured 3D models. In particular, we propose

a framework for texturing meshes from multiview images.

Our framework first uses 2.5D information rendered using

the 3D models along with user inputs as an intermediate

view dependent representation. These intermediate repre-

sentations are then used to generate realistic textures for

particular views in an unpaired manner. Finally, we use a

differentiable renderer to combine the generated multiview

texture into a single textured mesh. We demonstrate results

of multiview texture synthesis for example meshes.

1. Introduction

There has been significant work in deep generative mod-

eling in recent years [8, 23]. GANs and VAEs have been

employed in a number of applications such as inpainting,

conditional generation, and high resolution image synthe-

sis. Most works, however, focus on unconstrained or con-

strained generation of 2D images.

In a similar stride there has been some work in genera-

tion of 3D geometry from latent codes or from image collec-

tions [24]. However, there have been few works that lever-

age 3D information to guide image synthesis.

Furthermore there have been approaches for novel view

synthesis, which has been explored primarily in the context

of 2D conditional generative models [12] . Such a represen-

tation is inherently limited in that there is no explicit knowl-

edge of the 3D geometry of the scene or object for which a

novel view needs to be synthesized.

On the other hand, there have been approaches for

3D understanding from images in terms of meshes, point

clouds, or voxels [7, 10, 19]. There are a number of repre-

sentations that can be used for incorporating 3d information,

each having its own benefits.

In this work, we aim to leverage the rich geometry infor-

mation available from 3D corpora and texture information

available from 2D datasets in order to generate textured 3D

meshes. 3D model datasets usually have rich geometric in-

formation for a model class but generally lack or often have

very simplistic textures.

On the other hand, image collections provide rich photo-

realistic details about the texture of the objects but do not

contain explicit 3D information. By leveraging information

available in both these datasets, we can generate textured

models of objects, which we can then visualize from arbi-

trary view points.

An application of particular interest is synthesis of user-

guided colors or textures as demonstrated by Scribbler and

TextureGAN [14, 20]. Generating images that incorporate

user guidance is useful in content authoring for amateur

artists. Allowing a user to be able to guide the synthesis

of textures while borrowing the statistics from real images

would speed up pipelines involving painting texture and ad-

vertising. In addition, image synthesis from sparse guidance

is beneficial in use cases where the user needs to explore dif-

ferent styles quickly, for instance cars of assorted colors or

handbags of different materials and textures.

We propose a two-stage approach to generate textured

3D models. First, we render different 2.5D information

(normalized object coordinates, masks, albedo) from a set

of viewpoints for the mesh. These representations allow us

to use existing deep architectures for handling 2D images

and inject some degree of 3D information. We then use

these synthetic renderings to generate textured images for a

set of views using a network trained with unpaired 2D/ 3D

data.

The generated realistic textures match the statistics of

real image collection. These generated textures can then

be reprojected to consistent world coordinates to obtain a

textured 3D point-cloud which can then be visualized from

novel view points. A naive aggregation of generated tex-

tures form each viewpoint in the form of a point cloud ex-
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hibits inconsistencies in terms of color and lighting. To ad-

dress this, we additionally generate textured meshes by us-

ing a differentiable renderer to reconcile the textured images

from multiple views.

Further, we show that our choice of representation allows

for either control of global color and fine grained color con-

trol.

To summarize our contributions are threefold:

• We propose a two-stage architecture to texture 3D

models by first generating textured multiview images

from rendered 2.5D information and then reconciling

the multiview textures using a differentiable renderer.

• Our choice of representation and network allows for

direct or indirect color control of generated multivew

images

• The differentiable renderer allows for incorporation of

local texture properties in a geometry aware manner.

2. Related Works

There are several works which deal with conditional im-

age synthesis and synthesis of geometry.

2.1. Generative models

GANs and VAEs have been used in a variety of gen-

erative tasks. Primarily, GANs have been demonstrated

to perform well on generation of high-resolution im-

ages [8, 9], image inpainting [6], and image-to image-

translation. CycleGAN [22] and UNIT [11] demonstrated

image translation between disparate domains with unpaired

data. BiCycleGAN[23] and MUNIT[5] extended the above

to diverse translation from a single image. The control on

the diversity in both these cases are either not interpretable

or are limited to selection from a set of modes as in BiCy-

cleGAN. We intend to address this issue by allowing fine

grained user guidance for texture synthesis.

2.2. 3D understanding

Works such as MarrNet [7, 24] have demonstrated infer-

ring geometry from single or multiview images. Kanazawa

et al [7] learn to infer geometry from image collections and

subsequently obtain a textured mesh from the inferred ge-

ometry and input image. Delanoy et al. [4] have demon-

strated synthesis of geometry from sketches presented in

canonical views. There have also been a number of works

in the graphics community that learn to align and deform

models to input images to infer geometry of model. Our

proposed approach works in conjunction with such mod-

els as we assume that we have access to 3D models, either

ground truth or inferred, which we can use for guiding the

texture synthesis.

Another line of work relies on using existing 3D models

and 2D image collections along with a materials database to

learn to associate materials to regions of a 3D model, allow-

ing for photorealistic re-lightable renderings of textured 3D

models [13] . Our work is similar in spirit to this idea, how-

ever we eschew the need for a material dataset by training

an end-to-end generative model that in addition to learning

to associate texture to parts, also learns to generate view-

dependent textures.

2.3. Synthetic to real

A number of works generate synthetic data to aid the

learning process. The idea is that we can use renderings

of 3D models with precise knowledge regarding viewpoint,

lighting or texture to provide supervisory signals to train

generative networks, which are otherwise unavailable or

prohibitively expensive to obtain from natural images. This

helps in combining synthetic renderings and real 2D images

to learn realistic textures. SFMNet [17] uses synthetic ren-

derings of faces to learn an intrinsic image decomposition,

allowing for relighting of faces. Shrivastava et al.[15] syn-

thetic renderings of eyes along with a small subset of real

eye images to train a model that can generate richer set of

realistic looking eye images. GIS [1] use a generative model

to insert vehicles in outdoor driving scenes to augment driv-

ing datasets. We borrow ideas from literature in this area to

generate a set of intermediate images that aids in the learn-

ing process.

2.4. Userguided generation

A lot of image-to-image translation are unguided, or

have sparse guidance regarding generated textures. BiCy-

cleGan provides some degree of control and diversity of

generation at the cost of interpretability. The approach pre-

sented by Scribbler and TextureGan[14, 20] allow for gen-

eration of realistic interpretable texture and color informa-

tion. StarGAN [3] provide coarser control in that they can

generate images in a particular set of domains. However,

these methods are unable to reason about the geometry of

the object or the scene, and hence the color or texture incor-

poration might be inadequate in some cases. Our method

aims to address this issue by explicitly reasoning about the

geometry of the image.

3. Approach

Our approach consists of two stages–first we use 2.5D

information rendered from a mesh to generate textures for

multiple views for a given model. These textures are learned

using unpaired 2.5D and image data similar to CycleGAN.

The generated textures from multiple views are reconciled

using a differentiable renderer. We show that we have color

control over the generated textures.
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Synthetic Image Normalized object Coordinates Albedo

Figure 1. We render 2.5D information from different viewpoints

for each mesh, which are used as inputs to our multiview texture

synthesis stage.

3.1. Training Data:

We use models from the ShapeNet database for 3D data

and render 2.5D information. Our training data consists of

the following: For a given mesh (V, F ) with V ∈ RN×3

and F ∈ RM×3 in each of the model classes we generate

the following 2.5D channels : the Normalized object coor-

dinate representation (Snoc), albedo (Salbedo), shaded syn-

thetic rendering (Ssyn) and object mask (Smask) for several

different viewpoints vi. We represent this set of inputs as

Svi for each view. The NOC representation as presented

in [18] is the space contained in a unit cube around the ob-

ject, each pixel of a NOC image represents the (x, y, z) co-

ordinate of the point in some canonical orientation.

Input Image Input ImagePredicted Viewpoint Predicted Viewpoint

Figure 2. Viewpoints predicted for input images using the Ren-

derForCNN framework.

The viewpoints are sampled from a distribution that

matches the statistics of the viewpoint distribution of real

images. To determine this distribution, we use the pre-

trained models from RenderForCNN [16]. This gives us

an estimate of the approximate distribution of azimuth and

elevation values for the objects in our 2D training images.

To generate the synthetic data, we normalize the the given

3D model, and sample azimuth and elevation angles from

the estimated distribution on a sphere of fixed radius.

3.2. Framework:

We propose a two stage approach to generate textures

for meshes by using only unpaired supervision available

from image collections. Our framework consists of the

Image-texturing stage T1 which takes as input the geom-

Silhouette/ Shape 
information

+
Synthetic texture

Silhouette/ Shape 
information

+
Synthetic texture

Silhouette/ Shape 
information

+
Synthetic texture

Textured 
from View 1

Textured 
from View 2

Textured 
from View 3

Consolidated 
textured mesh

(using 
differentiable 

renderer)

Texture Synthesis network

Figure 3. Our framework consists of two stages. In the first

stage, we render 2.5D information(Normalized Object coordi-

nates, albedo and masks) in multiple views and generate realis-

tic textures for these views using CycleGAN [22]. In the second

stage, we use a differentiable renderer to consolidate textures from

multiple views into a single textured mesh.

etry information Svi (stacked tuple of NOC, albedo,mask)

to generate images Ivi corresponding to a viewpoint and a

mesh-texturing stage T2 that combines textures from multi-

ple views {Ivi
}ni=1

into a single consistent textured mesh.

3.2.1 Multiview texture-Synthesis stage:

We train the multiview texture-synthesis stage in an

unpaired manner using an architecture similar to

CycleGan[22] and VON[24]. Since there is no direct

supervision between the The 2.5D guiding channels and

the available image collection, we rely on unpaired image

to image translation models to learn an association between

2.5D geometry information and natural images. The

network generates outputs whose statistics match real

images for each view.

We inject global and fine grained color control by using

albedo channel stacked with NOC and mask as input. In this

setting, the network is encouraged to generate textures that

match the real image collection but are guided by simple

flat shaded colors from the synthetic renderings. We use the

synthetic textures provided with Shapenet.

Stage 1 consists of the following inputs: Stacked tuple

of NOCS maps, albedo and mask of the object Svi
i for a

particular viewpoint vi. The framework consists of two net-

works : (F ) that converts stacked 2.5D information (Svi
i )

into real image domain(R) and G that converts a real im-
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age into stacked 2.5D information. It is trained with the

following 3 components:

Lcycler = ||G(F (x))− x||2
2

(1)

Lcycles = ||G(F (y))− y||2
2

(2)

Where x ∼ Svi
i and y ∼ R

Additionally, we have an adversarial objective where the

discriminators Df and Dg that learns to classify real and

generated images in each domain,

Ladvf
= Esvi∼S

vi
i
[log(Df (F (x)))]

+ Ey∼R[log(1−Df (y))]

Ladvg = Ey∼R[log(Dg(G(x)))]

+ Esvi∼S
vi
i
[log(1−Dg(y))]

We generate image textures for multiple viewpoints from

this stage. However, since the only loss guiding it are the

cycle loss and adversarial loss, the generated images have

inconsistencies between viewpoints, in terms of specular

lighting and luminance of the texture across the surface.

That is we have a textures {Ivi } for each view point vi. To

account for this, we aggregate the generated image textures

in the next stage.

3.2.2 Mesh-Texturing Network

This stage uses a neural mesh renderer to combine all the

generated textures into a single consistent textured mesh.

We assume that we have access to a UV parameterization

of the desired mesh a priori. We then start with a candidate

texture that needs to be optimized and render the mesh with

the candidate texture from multiple viewpoints.

For the given views {vi}
n
i=1

and a given texture atlas

to be optimized Iuv ∈ RH×W×C , we use a differentiable

renderer R(Iuv, vi) : RH×W×C × R3 → RH×W×C , to

optimize the following:

Lrecon = ‖R(m, v)− Iv‖
2

Lfeat =
∑

i

wi ‖φi((R(m, v))− φi(I
v)‖

where Lrecon is a pixel-wise reconstruction loss, Lfeat is

the feature loss between the rendered image and the gener-

ated image; φi(I) are feature maps obtained from the i-th

layer of a pretrained feature extractor (VGG-19 here)

Ltvuv
=

∑

i,j

|(Iuv(i+ 1, j)− Iuv(i, j))|

+ |(Iuv(i, j + 1)− Iuv(i, j))|

Ltvproj
=

∑

i,j

|(Iv(i+ 1, j)− Iv(i, j))|

+ |(Iv(i, j + 1)− Iv(i, j))|

Additionally, we impose a total-variation loss both in UV-

space and in the projected space to promote consistency and

smoothness of texture. For known views, the final loss is

given by:

Ltotal = λrecon ∗ Lrecon + λfeat ∗ Lfeat

+ λtvuv
∗ Ltvuv

+ λtvproj ∗ Ltvproj (3)

Imposing only supervised losses, causes inconsistent

textures, hence we also render the model in viewpoints vj
for which we don’t have strict supervision and minimize the

following additional loss term

Lglobal = ‖φk((R(m, v))− φk(I
v)‖ (4)

for a random Iv ∼ Ivi . That is, for views with no supervi-

sion, we randomly sample a generated image Iv , and match

the feature of the rendered image at a very deep layer of a

pretrained feature extrator. This serves the dual purpose of

maintaining global consistency in the optimized texture as

well as filling certain regions of the UV map, that was not

visible in any view. Hence, during the unsupervised training

phase we have the following:

Ltotal = λglobal ∗ Lglobal + λtvproj ∗ Ltvproj (5)

4. Experiments

4.1. Dataset and Architectures

For the 3D models we used the Shapenet[2] cars classes

and rendered a number of 2.5D channels used during train-

ing. All the meshes are processed to generate a UV at-

las over a 1024*1024 image using the auto-uv feature of

blender. The UV maps can be obtained from any reason-

able auto UV tool. For real image collections, we used the

Comprehensive cars dataset from CUHK[21]. This dataset

contains over 1000 models of cars in various viewpoints.

We clustered the images based on viewpoint and only used

a filtered subset as mentioned. The dataset is divided into

front, back, side, and 3/4th views. We determine the dis-

tribution of azimuth and elevation angles of the cars in the

dataset using RenderForCNN. We observe a clustering of

views and only sample cars from a few of the clusters with

the largest number of samples.
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Figure 4. The viewpoints in the cars dataset are clustered into a

set of views. We filter the dataset to consider views only from the

largest central clusters.

4.2. Qualitative Evaluations

We use the cars class from ShapeNet to demonstrate

color guided texture synthesis. We want to demonstrate ex-

plicit global and fine grained control on the colors. For this

purpose we use a CycleGAN model that takes as input the

NOCS representation and the albedo or flat shaded chan-

nel rendered image and generates a textured image in the

proposed view. Additionally, we jitter the images in LAB

space to increase the variance of the color captured. We

(a) (b) (a) (b)

Figure 5. Results of texture synthesis network for cars dataset. (a)

Synthetic textured images from a single viewpoint. (b) Realistic

textured images generated from same viewpoint.

notice that to generate realistic textures, the network bakes

the lighting into generated texture from every view. How-

ever this generated lighting is not consistent across multiple

views. The flat shaded image then defines the fine grained

color information (for instance, patterns and logos) that can

otherwise not be captured by unguided generation. Addi-

tionally, global color control is afforded by simply changing

the ‘ab’ channels of the flat shaded image as in 6. We no-

tice that this is not same as changing the ‘ab’ channel of the

Figure 6. Our framework is able to generate cars with realistic

textures compliant with the input color. Each row represents a

different 3D model, And each column contains images generated

by altering the ‘ab’ channel of the flat shaded image in the input.

We see that, this has a different effect than just changing the ‘ab’

channel of the generated texture

generated image, as some colors do not look realistic w.r.t

to the data distribution.

4.3. Quantitative Evaluation

It is not particularly straightforward to measure the qual-

ity of the final textured mesh, as we do not have reference

textures for the mesh. We propose a proxy evaluation by

re-projecting the final textured mesh in a number of views

and calculating the inception score of the projected images

and the FID of the projected images compared to the real

data distribution. We look at both these scores together

to get a complete idea of the performance of our frame-

work. We notice that the images from the final textured

mesh have a lower FID score than images rendered with

synthetic textures, since our final textured mesh better re-

spects the statistics of real images. Additionally, we notice

that the rendered synthetic images have the highest incep-

tion score, here IS measures diversity more than quality of

the texture. Since the synthetic images have a wider range

of colors and textures the IS score indicates that the syn-

thetic distribution is more diverse than the real data distri-

bution. Images generated by projecting our textured mesh

has an IS in between the real and synthetic images since

it is more diverse than the real image distribution because

of the color control whilst still restricted to the statistics of

real image distributions, hence not exhibiting as much color

variation as the synthetic images.

IS FID

Synthetic 2.06 ± 0.32 23.25 ± 0.42

Real 1.43 ± 0.14 -

Ours 1.79 ± 0.28 21.21 ± 0.49
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Figure 7. Qualitative results for aggregated textures. Given rendered synthetic images from multiple viewpoints we generate realistic

textures for each viewpoint and aggregate them to a single textured mesh. The first column represents the synthetic cars in some viewpoint.

Columns 2-6 represent realistic textures aggregated using 3 views (left, right and front) projected onto different views

Figure 8. The textured mesh obtained by multiview aggregation

projected to a new viewpoint (left). Synthetic texture from the

same viewpoint (right). We see that the generated texture capture

more lighting and shading information than the synthetic textures.

5. Discussion and Conclusion

We have demonstrated preliminary results towards learn-

ing to generate textures for mesh from image collections.

We present a two stage approach to generate multiview tex-

tures and aggregate them into a single textured mesh for

the cars class. We intend to explore extensions to more

general class of models and geometries. Additionally, we

notice that the framework requires an estimate of the distri-

bution of viewpoints of the objects for better performance.

Making the model rely less on this requirement would help

the model reason better about the textures of the model.

We believe that our framework would be beneficial to tasks

in novel-view synthesis, geometry aware texture generation

and user guided mesh texturing.
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