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Abstract

Perception of 3D object properties from 2D images form

one of the core computer vision problems. In this work,

we propose a deep learning system that can simultaneously

reason about 3D shape as well as associated properties

(such as color, semantic part segments) directly from a sin-

gle 2D image. We devise a novel depth-aware differentiable

feature rendering module (DIFFER) that is used to train

our model by using only 2D supervision. Experiments on

both synthetic ShapeNet dataset and the real-world Pix3D

dataset demonstrate that our 2D supervised DIFFER model

performs on par or sometimes even outperforms existing 3D

supervised models.

1. Introduction

The world we live in is composed of illuminated phys-

ical objects with diverse shapes, sizes, textures, and sur-

face information. We, as humans, are capable of process-

ing the retinal image of an object to decipher the under-

lying 3D structure. Our 3D perception capabilities go be-

yond mere reconstruction of structural information. We are

highly adept at capturing a variety of other 3D properties

such as texture, part information, surface normals, etc.

Like humans, machines require 3D perception to per-

form real world tasks. The 3D perception of machines need

to go beyond just the shape reconstruction from 2D images.

For instance, semantic understanding of the perceived 3D

object is particularly advantageous in tasks such as robot

grasping, object manipulation, etc. Further, the ability to

effectively colorize a 3D model has applications in creative

tasks such as model designing, texture mapping, etc. Thus,

an ideal machine would have the capacity to infer both the

three-dimensional structure as well as associated features

given a single 2D image (Fig. 1).

In this work, we aim to design a deep learning system

that can simultaneously predict 3D shape (in the form of

point cloud) of an object while also predicting important

3D point characteristics such as color and part segmenta-

tion. However, training systems capable of performing a

multitude of 3D perception tasks poses several challenges:

(1) 3D data required for training such systems is not easy

to acquire. There is a lack of large-scale ground truth 3D

annotations for in-the-wild images. Existing datasets with

accurate 3D annotations are either synthetically created [1]

or are captured in constrained environments requiring elab-

orate procedures using multiple sensors and scanners [18].

(2) Models trained on synthetic datasets do not generalize

well to the real-world images due to differences in the in-

put data distributions. These challenges necessitate learn-

ing techniques that rely on easily available 2D images as

supervision instead of 3D ground truth.

Utilizing 2D data as supervision for 3D perception net-

work requires a differentiable rendering module that can ef-

fectively propagate gradients from the rendered 2D image

back to the predicted 3D model. Since our task is to learn

both 3D structure and features, this module would need to

be generic enough to render any feature that is associated

with a 3D model. Towards this end, we design a depth-

aware feature expectation formulation, where 3D point fea-

tures are effectively rendered onto a 2D surface based on the

depth value of the corresponding points. Such a mechanism

allows us to obtain accurate projections of the predicted 3D

features.

In summary, our contributions are as follows:

• We propose a differentiable point feature rendering

module named DIFFER to train single-view 3D point

cloud reconstruction and feature prediction using only

2D supervision. Being depth-aware, DIFFER can ef-

fectively render a diverse set of features such as color,

part segmentation and surface normals, thus enabling

the training of 3D feature learning systems using weak

supervision.

• We benchmark our approach on both synthetic

(ShapeNet [1]) and real-world (Pix3D [18]) datasets.

Extensive quantitative and qualitative evaluations

show that DIFFER performs comparably or even better

than approaches that use full 3D supervision.
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2. Related Works

3D Reconstruction Existing approaches to 3D reconstruc-

tion from single-view images predominantly use full 3D

supervision. Voxel based methods predict a full 3D oc-

cupancy grid using 3D CNNs [4, 2, 21]. However, voxel

formats are information-sparse since meaningful structural

information is mainly provided by the surface voxels. 3D

CNNs are also compute heavy and add considerable over-

head during training and inference. More recent works have

introduced techniques for predicting unordered 3D point

clouds [3, 10]. Point clouds offer the advantage of be-

ing information-rich, since points are sampled only on the

surface, and require lighter compute units for processing.

In this work, we compare against [3], which introduced

framework and loss formulations tailored for training point

cloud generators using 3D ground truth supervision, and ob-

tained superior single-view reconstruction results compared

to volumetric approaches [2]. We show competitive per-

formance using only 2D data as supervision. Works such

as [22, 19, 20, 24, 9, 13, 5, 8] explore ways to reconstruct 3D

shapes from 2D projections such as silhouettes and depth

maps. Yan et al. [22] obtain 2D masks by performing per-

spective transformation and grid sampling of voxel outputs.

Tulsiani et al. [19] use differentiable ray consistency to train

on 2D observations like foreground mask, depth and color

images. Lin et al. [9] pre-train a network by directly re-

gressing depth maps from eight fixed views, which are fused

to obtain the point cloud. This is followed by a network

fine-tuning via a depth projection loss. The works of [13]

and [5] project reconstructed 3D point clouds using a dif-

ferentiable point cloud renderer to obtain 2D masks during

supervision. While existing differentiable point cloud ren-

dering modules are able to render masks or depth maps, our

proposed module is capable of rendering arbitrary features

associated with the 3D model. Contrasting to [5], which

predicts color along with shape reconstruction, our network

jointly predicts shape, parts and color reconstruction and we

show quantitative results on all of them.

3D Feature Prediction 3D feature learning involves pre-

dicting 3D features such as semantics or color. Semantic

segmentation using neural networks has been explored by

several works [16, 14, 15, 6, 12, 11, 17]. [16] estimate

voxel occupancy as well as part labels for 3D scenes from

depth maps. [14, 15] introduce networks that perform point

cloud classification and segmentation. [11] train a network

that jointly estimates shape and part segmentation. While

these works require 3D part labels as ground truth, we show

competitive performance using only 2D annotations.

3. Approach

We develop a deep learning framework for joint 3D point

cloud reconstruction and general feature prediction that uses

only 2D supervision The predicted 3D point features can

be color (RGB), part segmentation labels or surface nor-

mals. To this end, we propose a novel depth-aware dif-

ferentiable renderer to obtain the corresponding 2D feature

projections from the 3D predictions of the network (Fig. 1).

The network training objectives for each feature are formu-

lated in the 2D domain. We extend the 2D mask projec-

tion formulation provided by Navaneet et al. [13] (CAP-

Net) to general feature projection of 3D point cloud from

a given viewpoint. Consider an input image I . We pre-

dict (x, y, z) co-ordinates of point cloud P ′ ∈ R
N×3 along

with k−dimensional features F̂ ∈ R
N×k using an encoder-

decoder architecture based network (Fig. 1). Assuming the

knowledge of intrinsic camera parameters and view-point v,

a perspective transformed point cloud P̂ = (x̂, ŷ, ẑ)∈RN×3

is obtained. Let M̂v be the mask obtained by orthogonally

projecting P̂ from view point v. Then the value of mask at

pixel index (i, j) is obtained as

M̂v
i,j = tanh

(

N
∑

n=1

φ(x̂n − i)φ(ŷn − j)

)

, (1)

where φ(·) is an un-normalized Gaussian kernel. The above

differentiable rendering formulation is proposed in CAP-

Net [13] and has no occlusion reasoning. It can only be

used to obtain mask supervision where self-occlusions do

not matter. Renderings of GT parts and color using CAP-

Net shown in fig. 2 indicate that the feature projections do

not account for occlusions. This makes it unsuitable for

training general feature prediction networks.

Depth-aware general feature projection The above pro-

jection formulation (Eq. 1) is independent of the depth of

the points. However, for a general feature associated with

the points, their relative depths determine which of the

points is projected to a particular 2D location. For a given

2D location, the point with the lowest depth value would be

visible while the rest of the points in the same line of sight

would be occluded and hence, not projected onto the 2D

map. Thus, it is necessary to obtain a depth map in order

to project any feature value. While the points correspond-

ing to the minimum depth values can directly be used to

acquire the depth maps, the resulting method is not differ-

entiable. In this work, we propose a differentiable approxi-

mation to obtain the depth values and subsequently project

features from a point cloud in a differentiable manner. Let

d̂n,vi,j be the depth value obtained at location (i, j) by pro-

jecting point n (Eq. 2).

d̂n,vi,j = ψ(x̂n − i)ψ(ŷn − j)ẑn (2)

The kernel function ψ for depth projection is defined as:

ψ(k) =

{

1, −r ≤ k ≤ r

10, elsewhere
(3)
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Figure 1: DIFFER module for feature reconstruction. We propose a differentiable point feature renderer for reconstructing point clouds

with associated features from just a single input image. (a) The network predicts features like part-segmentation and point color in addition

to the 3D shape. DIFFER is used to obtain 2D projection maps(eg. mask, color image and part-segmentation map) from the predicted point

cloud. The network is trained with 2D supervisory data. (b) DIFFER predicts projection probability values as a function of depth for each

point in the prediction. The 2D feature map is obtained as an expectation of point feature values.

where r is the width of the kernel, referred hereafter as

“well-radius”. The kernel determines the points in the vicin-

ity of the projected pixel and the point with the least depth

amongst them is selected as the point to be projected. The

well-radius regulates the smoothness and accuracy of the

depth maps. While a low value results in sparse projections,

a very high value results in inaccurate outputs.

We use the depth values obtained by the above formula-

tion to project any general 3D point features onto 2D im-

ages. We define the probability of the point n being pro-

jected on to the pixel (i, j), p̂n,vi,j , as:

p̂n,vi,j = exp
( 1

d̂n,vi,j

)

/(

N
∑

k=1

exp
( 1

d̂k,vi,j

)

)

. (4)

The probability of a point being projected depends on the

depth of the point and the presence of other points in the

same line-of-sight. Lower the depth value of a point, higher

is its probability of projection. To model this, we consider

the probability of projection to be inversely proportional to

the depth value of the point. The softmax normalization ap-

proximately models the influence of other points. Once the

point projection probabilities are determined, the final fea-

ture projection at a specific pixel is obtained as the expected

feature value at that location, F̂ v
i,j =

N
∑

n=1

p̂n,vi,j f̂
n.

We refer to this differentiable feature renderer as ‘‘DIF-

FER’’. In the case of DIFFER, a simple depth-aware ren-

dering (Eqns. 2- 4) can mimic complex occlusion reason-

ing resulting in an effective differentiable renderer for gen-

eral feature projection. Fig. 2 shows that DIFFER part/color

projections closely resemble GT parts/colors demonstrating

the importance of depth-aware rendering for feature pro-

jection. The above formulation can be extended to other

general features. We show experimental results on surface

normal prediction in the supplementary.

 CAPNet  DIFFER    GT

CAPNet  DIFFER    GT CAPNet  DIFFER    GT

Figure 2: Importance of depth-aware rendering: Projected part

segmentation and color maps for CAPNet [13] and DIFFER.

3.1. Loss Formulation

Mask Projection The per-pixel binary cross-entropy loss

between ground truth mask Mv and projection M̂v from

view-point v is obtained as:

Lv
M =

1

HW

∑

i,j

−Mv
i,j logM̂v

i,j − (1−Mv
i,j)log(1− M̂v

i,j)

(5)

whereH,W are the height and width of the projected image

respectively.

Color Projection The point cloud color is represented as a

3-channel RGB value associated with each point, i.e P ′ =
(X,Y, Z,R,G,B). Once the network predicts the 3D point

locations along with their color, we use the DIFFER module

to project 3D point colors on to the 2D image grid. We use

the mean squared error between the ground truth Cv and

the projected color image, Ĉv , as a loss function to train

our network:

Lv
C(C

v, Ĉv) =
1

HW

∑

i,j

||Cv
i,j − Ĉv

i,j ||
2. (6)

Semantic Part Projection A part label is associated with

every point in the point cloud. The label values are discrete,

and hence cannot be directly used to obtain projections. We
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