
Semi-supervised Three-dimensional Reconstruction Framework with Generative

Adversarial Networks

Chong Yu

NVIDIA Semiconductor Technology Co., Ltd.

No.5709 Shenjiang Road, No.26 Qiuyue Road, Shanghai, China 201210

dxxzdxxz@126.com, chongy@nvidia.com

Abstract

Because of the intrinsic complexity in computation,

three-dimensional (3D) reconstruction is an essential and

challenging topic in computer vision research and appli-

cations. The existing methods for 3D reconstruction often

produce holes, distortions and obscure parts in the recon-

structed 3D models, or can only reconstruct voxelized 3D

models for simple isolated objects. So they are not ade-

quate for real usage. From 2014, the Generative Adver-

sarial Network (GAN) is widely used in generating unreal

datasets and semi-supervised learning. So the focus of this

paper is to achieve high-quality 3D reconstruction perfor-

mance by adopting the GAN principle. We propose a novel

semi-supervised 3D reconstruction framework, namely SS-

3D-GAN, which can iteratively improve any raw 3D recon-

struction models by training the GAN models to converge.

This new model only takes real-time 2D observation images

as the weak supervision and doesn’t rely on prior knowl-

edge of shape models or any referenced observations. Fi-

nally, through the qualitative and quantitative experiments

& analysis, this new method shows compelling advantages

over the current state-of-the-art methods on the Tanks &

Temples reconstruction benchmark dataset.

1. Introduction

In computer graphics and computer vision areas, three-

dimensional (3D) reconstruction is the technique of recov-

ering the shape, structure and appearance of real objects.

Because of its abundant and intuitional expressive force, 3D

reconstruction is widely applied in construction [3], geo-

matics [16], archaeology [11], game [8], virtual reality [20]

areas, etc. Researchers have made significant progress on

3D reconstruction approaches in the past decades. The 3D

reconstructed targets can be some isolated objects [2, 25] or

large scale scene [9, 22, 27]. For different reconstructed tar-

gets, researchers attempt to represent 3D objects based on

voxels [2], point clouds [22], or meshes and textures [23].

The state-of-the-art 3D reconstruction methods can be di-

vided into following categories.

• Structure from motion (SFM) based method

• RGB-D camera based method

• Shape prior based method

• Generative-Adversarial based method

In this paper, we propose a semi-supervised 3D recon-

struction framework named SS-3D-GAN. It combines lat-

est GAN principle as well as advantages in traditional 3D

reconstruction methods like SFM and multi-view stereo

(MVS). By the fine-tuning adversarial training process of

3D generative model and 3D discriminative model, the pro-

posed framework can iteratively improve the reconstruction

quality in semi-supervised manner. The main contribution

of this paper can be summarized as following items.

• SS-3D-GAN is a weakly semi-supervised framework.

It only takes collected 2D observation images as the

supervision, and has no reliance of 3D shape priors,

CAD model libraries or any referenced observations.

• Unlike many state-of-the-art methods which can only

generate voxelized objects or some simple isolated ob-

jects such as table, bus, SS-3D-GAN can reconstruct

complicated 3D objects, and still obtains good results.

• By establishing evaluation criterion of 3D reconstruct-

ed model with GAN, SS-3D-GAN simplifies and opti-

mizes the training process. It makes the application of

GAN to complex reconstruction possible.

2. SS-3D-GAN for Reconstruction

2.1. Principle of SS­3D­GAN

Imagine the following situation, a person wants to dis-

criminate the real scene and artificially reconstructed scene

model. So firstly, he observes in the real 3D scene. Then he

observes in the reconstructed 3D scene model at exactly the

same positions and viewpoints as he observes in the real 3D

1 1



Camera

Discriminative NetworkGenerative Network

Real or Fake
2D Images ?

Loss Function

Iterative Fine-tuning Training Iterative Fine-tuning Training

2D Ground Truth Images

Figure 1. Principle and workflow chart of SS-3D-GAN

scene. If all the observed 2D images in the reconstructed 3D

scene model are exactly the same as the observed 2D images

in the real 3D scene. Then this person can hardly differen-

tiate reconstructed 3D scene model from the real 3D scene.

For the purpose of 3D reconstruction, we can accumulate

the difference between each observed 2D image in the re-

constructed 3D model and the observed 2D image in the

real 3D scene. If the difference at each position and view-

point is small enough, we can regard it as a high-quality 3D

reconstruction result. Fig. 1 illustrates this concept.

To combine the purpose of 3D reconstruction and GAN

model, we propose the novel 3D reconstruction framework,

namely SS-3D-GAN. For the proposed SS-3D-GAN model,

it consists of the 3D generative network and the 3D discrim-

inative network. Here, we can imagine the discriminative

network as the observer. So the purpose of the generative

network is to reconstruct new 3D model which is aligned

with the real 3D scene, and attempts to confuse the discrim-

inative network, i.e., the observer. While the purpose of the

discriminative network is to classify reconstructed 3D mod-

el by the generative network and the real 3D scene. When

the SS-3D-GAN model achieves Nash Equilibrium, i.e., the

generative network can reconstruct 3D model which exactly

aligns with the character and distribution of real 3D scene.

And at the same time, the discriminative network returns

the classification probability 0.5 for each observation pair

of generated and real 3D scene. This is also aligned with

the evaluation criterion of 3D reconstructed. In conclusion,

solving the 3D reconstruction problem is equal to making

the SS-3D-GAN model well-trained and converged.

2.2. Workflow of SS­3D­GAN

Firstly, to start the training process of SS-3D-GAN, we

generate a rough 3D reconstructed model as the initializa-

tion of generative network. The representation of the 3D

model is aligned with “ply” model format. The vertex and

color info are separately stored in triple structures. To gen-

erate this initial 3D model, we use the camera to collect

video stream as ground truth. The video stream is served as

the raw data to generate 2D observed images, camera tra-

jectory, as well as the original rough 3D model with spatial

mapping method [17]. This method generates 3D model

based on depth sensing estimation by comparing the differ-

entials between adjacent frames. The 2D observed images

captured from video stream are also served as ground-truth

image dataset.

After the initialization, we can start the iterative fine-

tuning training process of generative network and discrim-

inative network in SS-3D-GAN. The overall workflow of

SS-3D-GAN is also shown in Fig. 1.

As SS-3D-GAN needs to get the observed 2D images

in the reconstructed 3D scene model, we import the recon-

structed 3D model into Blender (a professional and open-

source 3D computer graphics software toolset) and Open-

DR [14]. OpenDR is a differentiable renderer that approxi-

mates the true rendering pipeline for mapping 3D models to

2D scene images, as well as back-propagating the gradients

of 2D scene images to 3D models. The differentiable ren-

derer is necessary. Because GAN structure needs to be fully

differentiable to pass the discriminators gradients to update

the generator.

In the Blender, we setup a virtual camera with the same

optical parameters as the real camera to collect video stream

in real 3D scene. As the camera trajectory is calculated

while processing ground truth video stream, we move the

virtual camera along this trajectory, and use renderer to cap-

ture the 2D images at the same positions and viewpoints

as in the real 3D scene. Hence, we are able to generate

the same number of 2D fake observed images in the recon-

structed 3D model and 2D ground truth images captured

from video stream.

When the 2D scene images of ground truth and fake ob-

servation are ready, we use the discriminative network to

classify them as the real or fake 2D images. At the same

time, we calculate the overall loss value through loss func-

tion. With the overall loss, SS-3D-GAN will continue fine-

tuning training process, and create new 3D generative net-

work and 3D discriminative network. The new trained 3D

generative network will generate a new reconstructed 3D

model for virtual camera to observe. And the new observed

fake 2D images as well as the ground-truth images will be

fed into the new 3D discriminative network for classifica-

tion. The workflow of SS-3D-GAN will iteratively train

and create new 3D generative and discriminative networks,

until the overall loss converges to the desired value.

2.3. Loss Function Definition

The overall loss function of SS-3D-GAN consists of two

parts: reconstruction loss LRecons and cross entropy loss

LSS−3D−GAN . So the loss function is written as follows:

LOverall = LRecons + λ · LSS−3D−GAN , (1)
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where λ is parameter to adjust percentages between recon-

struction loss and cross entropy loss.

In the SS-3D-GAN framework, the reconstruction qual-

ity is judged by the discriminative network. So the recon-

struction loss is provided by calculating the differences be-

tween real and fake 2D scene image pairs from the discrim-

inator. In this paper, three quantitative image effect indica-

tors are applied to measure the differences [26]. Peak Signal

to Noise Ratio (PSNR) indicator is applied to assess the ef-

fect difference from the gray-level fidelity aspect. Structural

Similarity (SSIM) [21] indicator which is an image quali-

ty assessment indicator based on the human vision system

is applied to assess the effect difference from the structure-

level fidelity aspect. Normalized Correlation (NC) indicator

which represents the similarity between the same dimension

images is also taken into consideration. The definitions of

these three evaluation indicators are as follows.

PSNR(x, y) = 10 log10

(

(MAXI )2

MSE (x, y)

)

, (2)

where MAXI is the maximum possible pixel value of scene

images: x and y. MSE(x,y) represents the Mean Squared

Error (MSE) between scene images: x and y.

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)

(

µ2
x + µ2

y + C1

) (

σ2
x + σ2

y + C2

) , (3)

where µx and µy represent the average grey values of scene

images. Symbol σx and σy represent the variances of scene

images. Symbol σxy represents covariance between scene

images. Symbol C1 and C1 are two constants which are

used to prevent unstable results when either µ2
x +µ2

y or σ2
x +

σ2
y is very close to zero.

NC(x, y) =
x · y

‖x‖‖y‖
, (4)

where symbol x · y indicates the inner product of scene im-

ages, operation ‖ ∗ ‖ indicates Euclidean norm of x and y.

SSIM indicator value of two images is in the range of 0

to 1. NC indicators value is in the range of -1 to 1. If the

value of SSIM indicator or NC indicator is closer to 1, it

means there is less difference between image x and image

y. For PSNR indicator, the common value is in the range of

20 to 70 dB. So we apply the extended sigmoid function to

regulate its value to the range of 0 to 1.

E Sigm (PSNR (x, y)) =
1

1 + e−0.1(PSNR(x,y)−45)
,

(5)

So the reconstruction loss is written as follows:

LRecons =

N
∑

j=1

{

α ·
[

1− E Sigm
(

PSNRGjFj

)]

+

β ·
(

1− SSIMGjFj

)

+ γ ·
(

1−NCGjFj

)

}

(6)

where α, β, γ are the parameters to adjust the percentages a-

mong the loss values from PSNR, SSIM and NC indicators.

The subscript GjFj represent the pair of ground truth and

fake observed 2D scene images. The symbol N represents

the total amount of 2D image pairs. In the next session, we

will discuss details of cross entropy loss for SS-3D-GAN.

2.4. SS­3D­GAN Network Structure

As aforementioned, the 3D model learned in SS-3D-

GAN is mesh data. The traditional method to handle mesh

3D data is sampling it into voxel representations. Then

mature convolutional neural network (CNN) concept can

be applied to this grid-based structured data, such as vol-

umetric CNN [18]. However, the memory requirement is

O(M3), which will dramatically increase with the size of

target object. The memory boundary also leads to the low

resolution and poor visual quality of 3D models.

Here, 3D mesh data can be represented by vertices and

edges. Because vertices and edges are basic elements of

graph, so we use the graph data structure to represent the 3D

model in SS-3D-GAN as G3D = (V,A), where V ∈ RN×F

is the matrix with N vertices and F features each. A ∈ RN×N

is the adjacency matrix, which defines the connections be-

tween the vertices in G3D. The element aij is defined as 1 if

there is an edge between vertex i and j. Other elements are 0

in matrix A if no edges are connected. The memory require-

ment of G3D is O(N2+FN), which is an obvious memory

saving over the voxel representation memory cost [4].

Then we can apply Graph CNN [4] to G3D. We allow a

graph be represented by L adjacency matrices at the same

time instead of one. This can help SS-3D-GAN to learn

more parameters from the same sample and apply different

filters to emphasize different aspects of the data. The input

data for a graph convolutional layer with C filters includes:

Vin ∈ RN×F,A ∈ RN×N×L,H ∈ RL×F×C, b ∈ RC, (7)

where Vin is an input graph, A is a tensor to represent L

adjacency matrices for a particular sample, H is the graph

filter tensor, and b is the bias tensor. The filtering operation

is shown as follows [4].

Vout = (A × VT
in)(2)H

T
(3) + b,Vout ∈ RN×C (8)

Like traditional CNN, this operation can be learned

through back-propagation and it is compatible with oper-

ations such as ReLU, batch normalization, etc.

For SS-3D-GAN, the discriminative network needs bril-

liant classification capability to handle the complex 2D

scene images which is the projection of 3D space. So we

apply the 101-layer ResNet [10] as the discriminative net-

work. The structure of generative network is almost the

same as the discriminative network. Because the generative

network needs to reconstruct the 3D model, so we change
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Figure 2. Details of generative network structure and discriminative network structure in SS-3D-GAN

all the convolutional layers to graph convolutional layers.

The typical ResNet applies batch normalization to achieve

the stable training performance. However, the introduction

of batch normalization makes the discriminative network to

map from a batch of inputs to a batch of outputs. In the SS-

3D-GAN, we want to keep the mapping relation from a sin-

gle input to a single output. We replace batch normalization

by layer normalization for the generative and discrimina-

tive networks to avoid the correlations introduced between

input samples. We also replace ReLU with parametric Re-

LU for the generative and discriminative networks to im-

prove the training performance. Moreover, to improve the

convergence performance, we use Adam solver instead of s-

tochastic gradient descent (SGD) solver. In practice, Adam

solver can work with a higher learning rate when training

SS-3D-GAN. The detailed network structures are shown in

Fig. 2.

Based on the experiments in [9], Wasserstein GAN (W-

GAN) with gradient penalty can succeed in training the

complicated generative and discriminative networks like

ResNet. So we introduce the improved training method of

WGAN into SS-3D-GAN training process. The target of

training the generative network G and discriminative net-

work D is as follows.

min
G

max
D

E
x∼Pr

[D (x)]− E
x̃∼Pg

[D (x̃)] , (9)

where symbol Pr is the real scene images distribution and

symbol Pg is the generated scene images distribution. Sym-

bol x̃ is implicitly generated by generative network G. For

the raw WGAN training process, the weight clipping is easy

to result in the optimization difficulties including capacity

underuse, gradients explosion or vanish. For improvement,

the gradient penalty as a softer constraint is adopted instead.

So the cross entropy loss for SS-3D-GAN is written as fol-

lows.

LSS−3D−GAN = E
x∼Pr

[D (x)]− E
x̃∼Pg

[D (x̃)]−

θ · E
x̂∼Px̂

[

(‖∇x̂D (x̂)‖2 − 1)
2
]

,
(10)

where θ is the parameter to adjust the percentage of gradient

penalty in the cross entropy loss. Px̂ is implicitly defined as

the dataset which is uniformly sampled along straight lines

between pairs of points come from Pr and Pg distribution-

s. The value of this cross entropy loss can quantitatively

indicate the training process of SS-3D-GAN.

3. Experimental Results

3.1. Qualitative Performance Experiments

In qualitative experiments, we adopt ZED stereo camera

as data collection tool. The ground truth dataset is collected

by using stereo camera to scan over a meeting room. With

the recorded video streams, we can extract the 2D scene im-

ages as the ground truth. At the same time, we can calculate

the camera trajectory based on depth estimation by stere-

o camera. With the 2D scene images captured from stereo

camera and the corresponding camera trajectory, we use s-

patial mapping to generate original rough 3D reconstructed

model. Spatial mapping method represents the geometry of

target scene as a single 3D triangular mesh. The triangular

mesh is created with vertices, faces and normals attached to

each vertex. To recover the surface of the 3D model, the 3D

mesh should be colored by projecting the 2D images cap-

tured during spatial mapping process to mesh faces. Dur-

ing the spatial mapping, a subset of the camera images is

recorded. Then each image is processed and assembled into

a single texture map. Finally, this texture map will be pro-

jected onto each face of the 3D mesh using automatically

generated UV coordinates [1].

With the initial rough 3D reconstructed model generated
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(a) (b) (c) (d) (e) (f)
Figure 3. Reconstructed results of SS-3D-GAN. The reconstructed scene is an assembly hall. The size of the hall is about 23 meters in

length, 11 meters in width and 5 meters in height. (a) shows the rough 3D model generated by spatial mapping method in the initialization

stage. (b) to (f) show the reconstructed 3D models in the iterative fine-tuning training process of SS-3D-GAN. (b): 15 epochs, (c): 45

epochs, (d): 90 epochs, (e): 120 epochs. We can find the reconstructed models are from coarse to fine. Holes, distortions and obscure parts

are greatly reduced by the SS-3D-GAN. (f) shows the ultimate reconstructed 3D model with small value in loss function (150 epochs).

Figure 4. Observed 2D images in the reconstructed 3D models and in the real scene. We take four representative 2D images in each 3D

model as the observed examples to illustrate the quality of 3D reconstructed models (They are shown in the same column). Column 1-5

are observed 2D images corresponding to 3D reconstructed models in Fig. 3(b-f). Column 6 are ground truth images which are observed

in the real scene. The images in the same row are observed in the same position and viewpoint.

by spatial mapping (shown in Fig. 3(a)), we initialize pa-

rameters in loss functions. We set the value of parameters

as follows: λ = 0.7, α = 0.25, β = 0.6, γ = 0.15, θ = 10.

In this experiment, we use 600 scene images as weak super-

vision. The learning rate of generative and discriminative

networks is 0.063. We use PyTorch as the framework, and

train the SS-3D-GAN with the iterative fine-tuning process

of 150 epochs.

Typical samples of reconstructed 3D model results are

shown in Fig. 3. Comparison results of observed 2D images

in the reconstructed 3D model and real scene are shown in

Fig. 4. The results shown in Fig. 3 and Fig. 4 can prove the

high quality of reconstructed 3D model and the correspond-

ing 2D observations of SS-3D-GAN framework in qualita-

tive aspect.

Typical samples of reconstructed 3D models of Tanks

and Temples dataset are shown in Fig. 5 ∼ 7. Compared

with ground truth provided by benchmark, it also proves

the reconstruction capability of SS-3D-GAN framework in

qualitative aspect.

3.2. Quantitative Comparative Experiments

We compare SS-3D-GAN with the state-of-the-art 3D

reconstruction methods in various scenes benchmark. Here

are the dataset we used in quantitative experiments.

Tanks and Temples dataset This dataset [12] is designed

for evaluating image-based and video-based 3D reconstruc-

tion algorithms. The benchmark includes both outdoor

scenes and indoor environments. It also provides the ground

truth of 3D surface model and its geometry. So it can be

used to have a precise quantitative evaluation of 3D recon-

struction accuracy.

As most of the state-of-the-art works in the shape prior

based and generative-adversarial based method categories

are target for single object reconstruction, and cannot han-

dle the complicated 3D scene reconstruction. Moreover,

their results are mainly represented in voxelized form with-

out color. So for fair comparison, we just take the state-of-

the-art works in SFM & MVS based and RGB-D camera

based method categories which have similar 3D reconstruc-

tion capability and result representation form into compar-

ative experiments. We choose VisualSFM [24], PMVS [6],

MVE [5], Gipuma [7], COLMAP [19], OpenMVG [15] and

SMVS [13] to compare with SS-3D-GAN. Beyond these,

we also evaluate some combinations of methods which pro-

vides compatible interfaces.

Evaluation Process For comparative evaluation, the first

step is aligned reconstructed 3D models to the ground truth.
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Figure 5. Reconstructed Truck models in Tanks and Temples dataset (With different view angles and details). Column 1 shows ground truth.

Column 2 shows the reconstructed 3D model with SS-3D-GAN. Column 3 shows the reconstructed 3D model with COLMAP method.

Table 1. Precision (%) for Tanks and Temple Dataset
Algorithms Family Francis Horse Lighthouse M60 Panther Playground Train Auditorium Ballroom Courtroom Museum Palace Temple

COLMAP 56.02 34.35 40.34 41.07 53.51 39.94 38.17 41.93 31.57 24.25 38.79 45.12 27.85 34.30

MVE 37.65 18.74 11.15 27.86 3.68 25.55 12.01 20.73 6.93 9.65 21.39 25.99 12.55 14.74

MVE + SMVS 30.36 17.80 15.72 29.53 34.54 29.59 11.42 22.05 8.29 10.62 21.24 18.57 11.45 12.76

OpenMVG + MVE 38.88 22.44 18.27 31.98 31.17 31.48 23.32 26.11 14.21 19.73 25.94 28.33 10.79 17.94

OpenMVG + PMVS 61.26 49.72 37.79 47.92 47.10 52.88 41.18 37.20 26.79 29.10 42.70 47.82 23.78 28.58

OpenMVG + SMVS 31.87 21.36 16.69 31.63 34.71 33.83 32.61 26.32 16.45 14.72 22.92 20.05 12.81 15.07

SS-3D-GAN 66.63 48.99 42.15 50.07 53.35 52.89 46.30 41.21 38.01 29.08 43.04 48.23 30.59 33.45

VisualSfM + PMVS 59.13 38.67 35.25 48.92 53.20 53.74 46.02 33.69 37.57 29.75 41.31 40.36 31.16 18.69

Because the methods can estimate the reconstructed camera

poses, so the alignment is achieved by registering them to

ground-truth camera poses [12].

The second step is sampled the aligned 3D reconstructed

model using the same voxel grid as the ground-truth point

cloud. If multiple points fall into the same voxel, the mean

of these points is retained as sampled result.

We use three metrics to evaluate the reconstruction qual-

ity. The precision metric quantifies the accuracy of recon-

struction. Its value represents how closely the points in re-

constructed model lie to the ground truth. We use R as the

point set sampled from reconstructed model and G as the

ground truth point set. For a point r in R, its distance to the

ground truth is defined as follows.

dr→G = min
g∈G

‖r − g‖ (11)

Then the precision metric of the reconstructed model for

any distance threshold e is defined as follows.

P(e) =

∑

r∈R

[dr→G < e]

|R|
, (12)

where [·] is the Iverson bracket. The recall metric quantifies

the completeness of reconstruction. Its value represents to

what extent all the ground-truth points are covered. For a

ground-truth point g in G, its distance to the reconstruction

is defined as follows.

dg→R = min
r∈R

‖g − r‖ (13)

The recall metric of the reconstructed model for any dis-

tance threshold e is defined as follows.

R(e) =

∑

g∈G

[dg→R < e]

|G|
(14)

Precision metric alone can be maximized by producing

a very sparse point set of precisely localized landmarks.

While recall metric alone can be maximized by densely

covering the whole space with points. To avoid the situa-

tion, we combine precision and recall together in a summa-

ry metric F-score, which is defined as follows.

F(e) =
2P(e)R(e)

P(e) + R(e)
(15)
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Figure 6. Reconstructed Church models in Tanks and Temples dataset. Column 1 shows ground truth. Column 2 shows the reconstructed

3D model with SS-3D-GAN. Column 3 shows the reconstructed 3D model with COLMAP method.

Table 2. Recall (%) for Tanks and Temple Dataset
Algorithms Family Francis Horse Lighthouse M60 Panther Playground Train Auditorium Ballroom Courtroom Museum Palace Temple

COLMAP 45.82 16.46 18.79 49.34 59.69 57.01 66.61 42.15 10.73 26.29 31.40 38.44 13.36 23.56

MVE 68.52 32.75 14.74 68.59 8.14 75.40 3.83 49.32 2.92 18.26 40.21 52.05 14.79 19.51

MVE + SMVS 30.47 15.62 7.82 41.06 45.20 52.71 1.34 20.86 0.51 4.96 14.13 21.03 5.84 5.80

OpenMVG + MVE 69.70 37.91 24.01 73.21 71.15 77.41 84.71 57.69 15.22 39.72 43.42 55.74 2.20 31.41

OpenMVG + PMVS 30.85 10.77 7.73 28.73 30.04 24.19 25.88 22.58 2.48 7.63 13.93 20.99 3.94 8.18

OpenMVG + SMVS 31.99 18.66 13.65 43.16 45.51 54.02 39.91 24.02 4.41 9.54 17.46 24.11 6.82 10.35

SS-3D-GAN 69.31 38.11 25.12 72.89 69.97 77.60 83.55 55.72 15.47 37.66 43.59 54.83 14.74 32.28

VisualSfM + PMVS 28.02 7.77 6.73 27.83 34.36 25.07 28.86 8.25 2.49 6.63 10.20 13.30 4.15 1.13

Either aforementioned situation will drive F-score metric to

0. A high F-score can only be achieved by the reconstructed

model which is both accurate and complete.

The precision, recall and F-score metrics for Tanks &

Temples benchmark dataset are shown in Table 1 ∼ 3,

respectively. According to the F-score metric obtained

on each of the benchmark scenes in this dataset, SS-3D-

GAN outperforms all other state-of-the-art 3D reconstruc-
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Figure 7. Reconstructed Barn models in Tanks and Temples dataset. Column 1 shows ground truth. Column 2 shows the reconstructed 3D

model with SS-3D-GAN. Column 3 shows the reconstructed 3D model with COLMAP method.

Table 3. F-score (%) for Tanks and Temple Dataset
Algorithms Family Francis Horse Lighthouse M60 Panther Playground Train Auditorium Ballroom Courtroom Museum Palace Temple

COLMAP 50.41 22.26 25.64 44.83 56.43 46.97 48.53 42.04 16.02 25.23 34.71 41.51 18.06 27.93

MVE 48.60 23.84 12.70 39.63 5.07 38.17 5.81 29.19 4.11 12.63 27.93 34.67 13.58 16.79

MVE + SMVS 30.41 16.64 10.44 34.35 39.16 37.90 2.40 21.44 0.96 6.76 16.97 19.72 7.73 7.98

OpenMVG + MVE 49.92 28.19 20.75 44.51 43.35 44.76 36.57 35.95 14.70 26.36 32.48 37.57 3.65 22.84

OpenMVG + PMVS 41.04 17.70 12.83 35.92 36.68 33.19 31.78 28.10 4.54 12.09 21.01 29.17 6.76 12.72

OpenMVG + SMVS 31.93 19.92 15.02 36.51 39.38 41.60 35.89 25.12 6.96 11.58 19.82 21.89 8.90 12.27

SS-3D-GAN 67.94 42.87 31.48 59.36 60.54 62.91 59.58 47.38 21.99 32.82 43.31 51.32 19.89 32.85

VisualSfM + PMVS 38.02 12.94 11.30 35.48 41.75 34.19 35.47 13.25 4.67 10.84 16.36 20.01 7.32 2.13

tion methods based on SFM & MVS and RGB-D camera.

In the Tanks & Temples dataset, for precision metric,

the closest competitor is COLMAP and VisualSFM + P-

MVS algorithms. For recall metric, the closest competi-

tor is OpenMVG + MVE algorithm. But for the aggregate

F-score metric, SS-3D-GAN can still achieve 1.1X∼1.5X

relative improvement over the second highest F-score algo-

rithms.

4. Conclusion and Future Works

We propose the novel 3D reconstruction framework to

achieve high quality 3D reconstructed models of compli-

cated scene. SS-3D-GAN transfers the traditional 3D re-

construction problem to the training and converge issue of

GAN model. Due to its weakly semi-supervised principle,

SS-3D-GAN has no reliance on 3D shape priors. So it is

very suitable to complicated industrial and commercial re-

construction applications in real business. SS-3D-GAN also

provides the quantitative indicators to measure the quality

of 3D reconstructed model from human observation view

angle. So it can also be used to mentor human’s design

work in the 3D modeling software, such as role modeling

for video games, special visual effects for films, simulator

design for autonomous driving, etc.

The SS-3D-GAN modle is trained from initial rough 3D

reconstructed model [17]. So the quality of initial rough

3D model will affect the final result of SS-3D-GAN. In the

Fig. 3(a), we provide the rough 3D model generated in the

initialization stage. It gives a visualized quality of the rough

model. There are large parts missing or with holes in the

rough model. In the future, we will make quantitative anal-

ysis of the influence of initial rough model to SS-3D-GAN.

Also lighting influence will be analysed in the future work.
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