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Abstract

In this paper we propose a novel deep learning frame-

work to enhance underwater images by augmenting our

network with wavelet corrected transformations. Wavelet

transforms have recently made way into deep learning

frameworks and their ability to reconstruct arbitrary sig-

nals accurately makes them favorable for many applica-

tions. Underwater images are subjected to unique distor-

tions, this is mainly attributed to the fact that red wave-

length light gets absorbed dominantly giving a greenish,

blue hue. This wavelength dependent selective absorption

of light and also scattering by the suspended particles intro-

duce non-linear distortions that affect the quality of the im-

ages. We propose an encoder-decoder module with wavelet

pooling and unpooling as one of the network components to

perform progressive whitening and coloring transforms to

enhance underwater images via realistic style transfer. We

give a sound theoretical proof as to why wavelet transforms

are better for signal reconstruction. We demonstrate our

proposed framework on popular underwater images dataset

and evaluate it using metrics like SSIM, PSNR and UCIQE

and show that we achieve state-of-the-art results compared

to those mentioned in the literature.

1. Introduction

In this paper we propose a novel deep learning frame-

work that encompasses wavelet transforms as one of the net-

work architecture modules to enhance underwater images.

Underwater imaging is an important task in many ocean

research and engineering tasks. Autonomous Underwater

Vehicles (AUVs) and Remotely Operated Vehicles (ROVs)

which rely on visual sensing as one of their sensor modal are

ubiquitous for embarking journey into the depths of water,

however visual sensing faces variety of challenges owing

to the wavelength selective absorption of water that makes
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it appear greenish, blue hue. The problem is further wors-

ened as one traverses the depth of water due to suspended

particles, time of the day, amount of light present which in-

troduce unique non-linear distortions degrading the image

quality. AUVs which use vision-based algorithms should

take into account the change in color, illumination and the

distortions to effectively make intelligent decisions. This

prompts for frameworks that will help in restoring or en-

hancing underwater images to increase the visual quality. In

order to restore or enhance underwater images, we should

first study the basic physics laws that govern the formation

of image underwater. The water medium presents unique

challenges that are usually not encountered while capturing

images in the air medium. Light gets attenuated in an expo-

nential fashion when it enters the water medium resulting in

highly degraded images. The forward and backward scatter-

ing of light results in a veil that obscures the actual objects

and scene under consideration. As authors in [18] summa-

rize, the images of interest are usually plagued by one or

more of these problems : blurring, bright artifacts, low con-

trast, noise etc. To deal with these problems, underwater

image processing can be broadly categorized as either an

image restoration technique that involves modeling the im-

age degradation and treating it as an inverse problem where

various parameters like attenuation and diffusion constants

or depth estimation of the scene/object have to be consid-

ered to restore the underwater image. The other category

involves enhancing the image qualitatively without relying

on any physical model. In this work we focus on enhanc-

ing the underwater image without relying on any physical

model. We propose a novel encoder-decoder architecture

which has wavelet corrected transforms as one of the net-

work module, using this we treat the problem of image en-

hancement as a photo-realistic style transfer problem and

show that we achieve state-of-the-art results. Towards this

we make the following contributions :

1. We treat underwater image enhancement problem as

a photo-realistic style transfer problem and propose a
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Figure 1. The query underwater image along with the style im-

age is fed to the encoder-decoder module which has wavelet pool-

ing and unpooling layers augmented by whitening and color trans-

forms to perform stylization. The resultant image is enhanced and

has low noise and improved global contrast.

novel deep learning framework that leverages wavelet

transforms as its network module to help restore un-

derwater images.

2. Our framework is able to restore images with high fi-

delity leading to an improved global contrast, reduced

noise level and also retaining intricate and sharp details

of the original images.

3. We demonstrate our framework on popular underwater

images dataset and use popular evaluation metrics like

SSIM, PSNR and UCIQE to show how effective our

proposed framework is.

In what follows, section 2 will highlight some of the con-

temporary works on the problem, in section 3 we will dis-

cuss why wavelet assisted transforms neural network archi-

tectures are better suited for inverse problems such as im-

age enhancement and restoration. In section 4 we discuss

in detail our proposed methodology followed by results and

conclusion. Figure 1 gives an overall schematic of proposed

methodology.

2. Related Work

In this section we discuss few contemporary, related

works that have been carried out in this area. Underwater

image enhancement and restoration techniques are impor-

tant for many applications like aquatic robot inspection, ma-

rine life and environment surveillance and also in oceanog-

raphy. Unmanned underwater vehicles have replaced tra-

ditional human surveillance methods, the evolving sensor

technology and also reliance on vision algorithms for mak-

ing intelligent decisions prompt for better frameworks that

could circumvent various image degradation problems. Au-

thors in [6] propose to use a Cycle-GAN approach to first

generate synthetic underwater images and then use the gen-

erated pairs as training data. They learn a forward and in-

verse mapping between distorted and undistorted images by

performing style transfer using Cycle-GAN. The problem

with using GAN is the introduction of unnatural artifacts in

the images making them appear less realistic. Authors in [2]

propose a deep learning framework based on convolutional

neural networks to enhance the underwater images that at-

tempts to jointly optimize MSE and SSIM losses along with

using underwater image formation model to generate syn-

thetic images which are further used by their network for

training. In paper [12] the authors propose to use gen-

erative adversarial networks to generate realistic underwa-

ter images by using in-air images and their corresponding

depth pairings which form the training data for their two-

stage network that performs color correction. Many works

[4, 11] also propose to use dehazing algorithms to restore

underwater images, but the problem is dehazing and restor-

ing underwater images are two different physical phenom-

ena and the algorithm may or may not perform adequately.

Some works [8, 1, 17] leverage fusion techniques and other

optical properties of light, color correction mechanisms and

dark channel priors etc to restore underwater images. In

this work we propose a simple yet effective framework to

enhance underwater images. We treat underwater image en-

hancement problem as a realistic style transfer problem us-

ing an encoder-decoder architecture augmented by wavelet

pooling and unpooling which performs progressive styliza-

tion of images using whitening and coloring transforms 4.3.

3. High Fidelity Signal Reconstruction

In this section we briefly talk about the motivation

behind using wavelet pooling and unpooling as network

components as opposed to max-pooling operations. Deep

Learning frameworks have found immense applications in

many low-level computer vision tasks like segmentation,

super-resolution etc. Recently many works[23, 22] have

proposed to augment regular deep learning frameworks

with classical signal processing techniques like wavelets,

non-local processing etc. The use of wavelet transforms

has found extensive use in recent works like [3] for super

resolution, for image denoising [9], feature dimension re-

duction [20] etc. The idea of using Haar wavelets to re-

cover the spatial signal without noise amplification for per-

forming photo-realistic style transfer [24] and the work in

[22] shows how classical signal processing approaches like

wavelets in conjunction with deep learning frameworks are

suitable for inverse problems has inspired this work of un-

derwater image enhancement and restoration. We leverage

the work done in [24] to transform underwater image en-

hancement problem into an exemplar based style transfer

problem to restore and enhance degraded and distorted im-

ages.The work in [24] is inspired by the interpretation of
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deep learning frameworks in terms of frames and wavelets

[23, 22]. A frame φj is a subset of Hilbert space H such

that it allows for a function f ∈ H to be numerically recon-

structed from its frame coefficients in L2. Mathematically,

for φj to be called a frame, φj ⊂ of H, with A,B > 0,

satisfying,

A||f ||2 ≤
∑

(| < φj , f > |)2 ≤ B||f ||2, ∀f ∈ H (1)

here A, B are the upper and lower bounds respectively

and if A = B then its called a tight frame. The values

(| < φj , f > |)Kj=1
are called the frame co-efficients. These

co-efficients are responsible for helping in reconstructing

the original frame by using Dual Frame (φ̃j). The expres-

sion for the frame and its dual is given by,

Frame(φj) = F ∗F (φ̃j) (2)

Dual(φ̃j) = (F ∗F )−1φj (3)

With this motivation, the wavelet transforms are used as

one of the components in the encoder-decoder architecture

to enhance its performance. More specifically, Haar wavelet

transforms replace the max-pooling operations. The Haar

wavelet pooling operation has four kernels consisting of

high frequency and low frequency filters represented as

{LLT , LHT , HLT , HHT }, which are represented as LL,

LH, HL and HH respectively for brevity. The low frequency

kernel (LL) captures the smooth surface and texture infor-

mation while the high frequency kernels (LH,HL,HH) cap-

ture edge-like information. The mirror operation of wavelet

pooling which is unpooling is capable of reconstructing the

original signal with minimal noise amplification by per-

forming component wise transposed convolution and sum-

mation.This alluring property helps in retaining the struc-

tural information of the image while also performing faith-

ful style transfer. We use this idea to perform style transfer

on under-water images and in-turn restore them.

4. Proposed Methodology

In this section we provide detailed overview of the net-

work architecture and how we use wavelet guided network

components to restore underwater images.

4.1. Model Architecture

The model architecture consists of an auto-encoder net-

work which is used for general image reconstruction pro-

cess. We leverage the network architecture proposed by

Yoo et. al [24] which mainly consists of the VGG19 net-

work [19] trained on ImageNet to act as an encoder. The

network is modified such that conv1-1 to conv4-1 layers

are treated as encoders followed by replacement of regu-

lar max-pooling layers with wavelet pooling layers. The

decoder is the exact mirror image of encoder with wavelet

unpooling layers in between. This novel modification is be-

cause using simple upsampling or max-pooling masks as

proposed in works [13, 14] to invert the features to RGB

space leads to loss of spatial information in the feature maps

which further leads to poor quality image reconstruction.

The information captured by the low frequency filters of

the wavelet pooling is passed onto the next encoder mod-

ule while the high frequency filters are skip connected to

the decoder module directly.

4.2. Wavelet Pooling and Unpooling

Convolutional Neural Networks (CNN) have become de-

facto standard for various image and video related tasks.

The state-of-the-art methods are capable of classifying im-

ages, objects, videos etc with significant accuracies. This

performance has motivated researchers to come up with bet-

ter foundational concepts and tweaks to further enhance the

performance of network models [20]. The major compo-

nents of the CNN are the convolutional layers and the pool-

ing layers. The convolutional layer acts as a feature extrac-

tor while the pooling layer aggregates all the extracted fea-

tures and tries to reduce the dimensions of the features. The

most common type of pooling operations are - Max-Pooling

and Average-Pooling. The problem with these methods is

that they employ a neighborhood approach to subsample

the features as outlined by authors in [20]. Pooling is basi-

cally involves condensing the features extracted by the con-

volutional layers, by summarizing them into a single neu-

ronal value. To circumvent these problems, the concept of

wavelet pooling has become popular [9, 24, 23, 22, 20],

in this work we also employ wavelet pooling and unpool-

ing operations based on a recent mathematical development

called frames and wavelets. As outlined in section 3, the

max-pooling layers of the encoder-decoder module is re-

placed by the wavelet pooling and unpooling layers which

are based on the Haar wavelet transform. The Haar wavelet

is just one of many transforms [7] which is simple and sat-

isfies the tight frame condition outlined in section 3 along

with providing a way to decompose the signal into high

and low frequency sub-bands which captures complemen-

tary information.

4.3. Whitening and Color Transforms

Convolutional Auto-Encoders have been explicitly used

as unsupervised feature extractors for image data. Whiten-

ing transforms have been used as a preprocessing step for

images to reduce the redundant information before feeding

them to neural networks. The photo-realistic style trans-

fer method attempts to use whitening and color transforms
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described in [13]. The idea is to use VGG-19 to extract

feature maps of both the content image Ic and the style im-

age Is and then find feature correlation in the VGG domain.

By using singular value decomposition (SVD) the features

extracted from content image are projected onto the eigen-

space of style image. More precisely, the whitening trans-

form strips off the style of the image while keeping the over-

all structure of the image intact and the coloring transform

does the inverse process of whitening transform. These

transferred features are fed to the decoder to obtain the fi-

nal stylized image. Authors in [15] give a detailed account

of the effect of using whitening transforms on autoencoders.

In practice, the whitening transform is usually carried out by

a technique called ZCA - Zero Component Analysis [16],

we demonstrate the effect of whitening transform and trace

the steps to whiten the data on the CIFAR10 dataset [10].

We first rescale the images to have values between [0,1], by

dividing them by maximum pixel value of 255. Now, we

perform a per-pixel mean subtraction for all images render-

ing each pixel value of all images centered around 0. This

means when feature extraction is performed, the image fea-

tures are treated as separate. Now the co-variance matrix

of this zero-centered data is calculated to obtain the eigen-

values necessary for performing singular value decomposi-

tion (SVD) to rotate the data, the equation to perform this

transformation is given by,

Xzca = U.diag(
1√

diag(S) + ǫ
).UT .X (4)

where, U consists of left singular vectors, S consists of sin-

gular values of the covariance of the normalized dataset, X

is the normalized dataset and ǫ is the hyperparameter re-

sponsible for controlling the whitening effect. The results

of the whitening transform are presented in figure 2.

5. Experiments

In this section we discuss about the various experiments

carried out on paired and unpaired datasets. Here paired

dataset means, we have the content image which is un-

derwater and degraded and the corresponding style image

which is clear and undistorted. This dataset was obtained

from [6]. The other dataset is unpaired, in the sense we

have no particular style image, but we experiment with ar-

bitrary style images. We report the PSNR and SSIM values

of enhanced images as part of the quantitative evaluation.

5.1. Datasets and Implementation Details

Deep learning frameworks for underwater image pro-

cessing is largely limited by lack of dataset. To circumvent

this problem, many works [6, 2] generate synthetic image

pairs to train the network. We use the image pair gener-

ated by authors in [6] and another state-of-the-art dataset

Figure 2. The whitening transform is a pre-processing step that

is used to make the image pixels de-correlated so that the perfor-

mance of a deep learning framework is improved. In our case, the

whitening transform is used to strip off the style of the image while

preserving the overall structural integrity of the image. We have

demonstrated on few samples of CIFAR10 dataset.

that had degraded underwater images obscured by turbidity

[5]. We also demonstrate our proposed approach on various

stock underwater images with arbitrary styles and also re-

port results by performing video stylization. As mentioned

in section 4 we transform a VGG19 network into an en-

coder module pre-trained on ImageNet by imposing a L2

and feature Gram matching loss with the encoder[24]. All

the implementation was done on a local machine - Mac-

Book Pro, 8GB RAM, Integrated graphics, The stylization

process took approximately 22-26 seconds to generate a 512

resolution sized output image.

5.2. Evaluation Metrics

The ability to discern the differences between images

comes naturally to human beings, this task is difficult to

quantify, however many surrogate metrics like Structural

Similarity Index (SSIM) and Peak Signal to Noise Ratio

(PSNR) and many other metrics have been developed that

help us make informed decisions on the quality of images.

In our work, we utilize PSNR and SSIM to quantitatively

measure the performance and also use underwater color im-

age quality evaluation metric (UCIQE) introduced by au-

thors in [21]. In this section we briefly outline the various

metrics that are used for evaluation.

1. Peak Signal to Noise Ratio - The Peak Signal to Noise

Ratio (PSNR) measures the ratio of maximum possible

amount of signal and the corrupting noise that affects

the fidelity of the signal. It is calculated as follows,

PSNR(Ii, Îi) = 10 log
(maxIi)

2

1/N
∑N

i=0
(Ii − Îi)

(5)
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One of the important objectives of enhancing underwa-

ter images is to denoise them, we use PSNR to report

the noise level of the enhanced images.

2. Structural Similarity Index - The structural similarity

index (SSIM) is used to quantify the similarity be-

tween two images. We use this metric to measure how

similar is the enhanced image to the ground truth im-

age. It is calculated as follows,

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(6)

3. Underwater Color Image Quality - We use the under-

water color image quality metric proposed by Yang et

al [21] to provide a better evaluation of the enhanced

images. The proposed metric combines criteria like

chroma, contrast and saturation to measure how effec-

tive is the enhancement. It is calculated as follows,

UCIQ = c1σc + c2contrast+ c3µs (7)

where c1, c2, c3 are the weighted co-efficients and σc

and µs are the standard deviation of chroma and av-

erage of saturation respectively. The values of these

co-efficients have been experimentally found to be

c1 = 0.4680, c2 = 0.2745 and c3 = 0.2576. We

use this equation to calculate how enhanced our images

are. The results are summarized in the next section.

5.3. Results

In this section we demonstrate our proposed approach on

various datasets and report the performance using quantita-

tive evaluation metrics like PSNR, SSIM and UCIQ. In fig-

ure 3 we have performed style transfer on a paired dataset.

As it is evident, we have tried to enhance/restore the under-

water image by performing a realistic style transfer. The

presence of wavelet pooling and un-pooling allows to in-

dependently control how much stylization can be done, by

allowing us to apply the whitening and color transforms

(WCT) at various stages of the model architecture. We re-

port the results of WCT performed at encoder, decoder, high

frequency skip connections stage and also a power set of

all these combined. The PSNR and SSIM values are sum-

marised in table 1. Its clear that performing style transfer

at the decoder stage allows us to restore underwater image

having higher structural similarity with the ground truth im-

age and also reduced noise as reported by the PSNR val-

ues. Next we experiment our framework on the TURBID

dataset [5], which consists of a reference image and corre-

sponding images of varying degree of degradation. In Fig-

ure 5, the images are degraded by giving it a greenish hue,

we try to restore two images of varying level of degrada-

tion, as evident from the SSIM value, our framework has

Figure 3. We restore/enhance underwater image consisting of a

marine animal obscured by the greenish,blue hue. Performing styl-

ization at the decoder stage allows us to obtain enhanced images

which have higher structural similarity with the ground truth and

also reduced noise level.

enhanced both the images. In figure 6 and figure 7 we ex-

periment on few other underwater images, its clearly visible

that the restored images have high content fidelity and are

color corrected. The intricate color details and sharp fea-

tures of the marine environment are completely preserved.

Another little tweak is to include semantic segmentation

maps for both the content and style images, so that style

transfer occurs for the corresponding parts of the image. We

also demonstrate our framework by stylizing a video, we

use a stock youtube video that shows exploring the depth of

the great barrier reef, we use an arbitrary undistorted style

image of another coral reef. Figure 8 shows the video styl-

ization results. The video result can be found at this link

https://youtu.be/NwjQ_Q1da2s

6. Conclusion

In this paper we have proposed a novel deep learning

framework augmented by wavelet pooling and unpooling

as its network components to solve the problem of under-

water image enhancement. We transform underwater image

enhancement problem to photo-realistic style transfer prob-

lem and we achieve better results compared to those in liter-

ature. Our proposed method helps in recovering highly de-

graded images and helps achieve low noise and overall bet-

ter global contrast while retaining the sharp features which

are obfuscated by the backscattering of light underwater.

We have demonstrated our results on various underwater

image datasets and show that we achieve state-of-the-art re-

sults compared to works in literature [6, 2] as characterized

by the PSNR and SSIM values. We have also demonstrated

our proposed methodology by stylizing a video.
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Table 1. Quantitative evaluation between the ground truth image

and stylised images.

Image (GT vs)
PSNR/SSIM

Figure 3

PSNR/SSIM

Figure 4

Decoder-Encoder-Skip 28.31 0.7398 29.13 0.7850

Decoder-Encoder 28.32 0.7401 29.17 0.7866

Encoder-Skip 27.91 0.7715 29.00 0.7519

Encoder 27.90 0.7718 29.00 0.7536

Decoder-Skip 29.93 0.9126 29.42 0.7927

Decoder 29.94 0.9127 29.47 0.7949

Figure 4. The restored image shows enhanced global contrast and

low noise content. Its evident from the stylized images that intri-

cate details of the marine animal and its environment is perfectly

captured. Notice the surrounding marine environment covered in

pinkish hue which is perfectly restored in our results.

Figure 5. We experiment our framework with the TURBID dataset

which has a reference image and corresponding degraded images

of varying degree. We try to enhance the least turbid image and

the most turbid image. SSIM suggests that our framework was

successful in enhancing the images.
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