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Abstract

Two major deep learning architectures, i.e., patch-based

convolutional neural networks (CNNs) and fully convolu-

tional neural networks (FCNNs), are studied in the context

of semantic segmentation of underwater images of coral

reef ecosystems. Patch-based CNNs are typically used to

enable single-entity classification whereas FCNNs are used

to generate a semantically segmented output from an input

image. In coral reef mapping tasks, one typically obtains

multiple images of a coral reef from varying viewpoints ei-

ther using stereoscopic image acquisition or while conduct-

ing underwater video surveys. We propose and compare

patch-based CNN and FCNN architectures capable of ex-

ploiting multi-view image information to improve the accu-

racy of classification and semantic segmentation of the in-

put images. We investigate extensions of the conventional

FCNN architecture to incorporate stereoscopic input im-

age data and extensions of patch-based CNN architectures

to incorporate multi-view input image data. Experimental

results show the proposed TwinNet architecture to be the

best performing FCNN architecture, performing compara-

bly with its baseline Dilation8 architecture when using just

a left-perspective input image, but markedly improving over

Dilation8 when using a stereo pair of input images. Like-

wise, the proposed nViewNet-8 architecture is shown to be

the best performing patch-based CNN architecture, outper-

forming its single-image ResNet152 baseline architecture in

terms of classification accuracy.

Index terms: Underwater imaging, coral reef imaging, coral reef

classification, deep learning, semantic segmentation, 3D recon-

struction, multi-view integration

1. Introduction

The challenge of generating an accurate and repeatable

map of the underlying ecosystem has been a significant lim-

iting factor in ecological studies of marine environments,

especially coral reefs. Manual in situ mapping performed

underwater by human divers is extremely time consuming,

whereas aerial photography and satellite remote sensing are

both severely limited by the fact that seawater absorbs light

strongly, thereby limiting monitoring to very shallow coral

reefs [11]. Acoustic methods, although capable of mapping

the ocean floor at a large spatial scale, are simply unsuitable

for mapping marine ecosystems at finer spatial scales.

Within the larger field of marine ecology, the subfield of

coral reef ecology has been receiving increasing attention

in recent times on account of the fact that coral reefs across

the globe are facing increasing threats from both, natural

and anthropogenic stressors. These stressors, which include

climate change, ocean acidification, sea level rise, pollu-

tant runoff, and overfishing [2, 13], have combined to cause

rapid declines in coral reef ecosystems worldwide over the

past three decades, resulting in a global marine environmen-

tal crisis [3]. The precarious state of coral reef ecosystems

worldwide lends special urgency to the task of advancing

current mapping and monitoring technologies so that accu-

rate detection and precise quantification of changes in coral

reef ecosystems at appropriate scales of temporal and spa-

tial resolution is possible.

With recent advances in autonomous underwater ve-

hicles (AUVs) equipped with high-resolution cameras, in

situ surveys are being increasingly replaced by image- and

video-based robotic surveys. This has led to growing inter-

est within the research communities in marine biology and

marine ecology in exploiting computer vision and machine

learning techniques for high-throughput automatic analy-

sis and annotation of benthic images [5, 6, 23, 24, 26, 28].

Computer vision and machine learning techniques are now

enabling the generation of detailed, large-scale maps of un-

derwater environments [14]. AUVs traveling systematically

through coral reef environments are able to continuously ac-

quire high-quality images of small portions of the coral reef

ecosystem. Using computer vision and machine learning

algorithms, the individual images are automatically assem-

bled into a large-scale, 3D reconstruction (or map) of the

coral reef ecosystem accompanied by semantic classifica-

tion of the various coral taxa, thereby permitting one to es-
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timate the spatial distribution of these taxa on the coral reef.

In spite of recent advances in automating the map gener-

ation process using computer vision and machine learning

techniques, significant challenges remain to be addressed.

Conventional computer vision and machine learning tech-

niques entail the segmentation of regions of interest in the

input image or video stream, characterization of these re-

gions using features, classification of these regions into pre-

defined categories using the extracted features, and 3D re-

construction and recognition of objects from the results of

the classification. Traditional computer vision and machine

learning algorithms employ hand-crafted or pre-engineered

features, models and classifiers for the purpose of 3D ob-

ject reconstruction and recognition. A major shortcoming

of pre-engineered features and classifiers is their lack of

adaptability when faced with underwater images that typi-

cally exhibit significant variability due to changes in illumi-

nation, water turbidity, strong ocean currents and presence

of algal blooms [4]. One of the promises of deep learning

neural network architectures is their ability to replace hand-

crafted or pre-engineered features with efficient algorithms

for hierarchical feature learning and feature extraction from

the underlying image data, which is especially important in

computer vision [18].

Modern deep learning neural network architectures for

semantic image segmentation typically fall into one of two

major categories. The first category comprises of the fully

convolutional neural network (FCNN) architectures, which

segment and classify an image on a per-pixel basis using

a single end-to-end trainable network. The second cate-

gory comprises of patch-based convolutional neural net-

work (CNN) architectures that classify image segments or

image patches into predefined classes, thus generating a se-

mantically segmented image. In the case of the patch-based

CNNs, the image segments or image patches are typically

generated using well known algorithms such as simple lin-

ear iterative clustering (SLIC) [1] or graph cuts [7, 8].

When semantic image segmentation is performed in the

context of mapping tasks, such as in remote sensing or un-

derwater imaging, the scene objects or entities of interest

are often captured from multiple viewpoints. However, in

conventional approaches to semantic image segmentation,

only a single image is utilized for the purpose of classifi-

cation. In the context of coral reef monitoring, a typical

semantic image segmentation pipeline comprises of image

acquisition and image filtering followed by image registra-

tion and mosaicking where a composite 2D image is created

in order to generate a full map of the underlying coral reef.

In conventional computer vision-based approaches to auto-

matic annotation of benthic data, further analysis is done

on the composite 2D image wherein most of the multi-view

information is discarded. In this work we propose meth-

ods for utilizing this often discarded multi-view information

with the aim of further improving the accuracy and preci-

sion of semantic image segmentation. Figure 1 depicts a

typical computational pipeline for 3D reconstruction of a

coral reef accompanied by the semantic classification of its

constituent taxa.

In the case of the FCNN architecture, we investigate

the possibility of using stereoscopic image pairs as input

to achieve more accurate and precise semantic segmenta-

tion of coral reef images. We employ a well-known stereo

imaging algorithm to generate a disparity map from the left-

and right-perspective rectified coral reef images [12]. The

disparity map is added as a fourth channel (complementing

the existing three RGB color channels) to each coral reef

image that is input to the FCNN. The disparity map, which

encodes 3D disparity information, is expected to guide the

semantic segmentation of the coral reef images. In addi-

tion, we propose the TwinNet architecture which is based

roughly on the Siamese network architecture [16, 19] and

accepts both the left- and right-perspective images as input.

From these stereo images the TwinNet architecture can learn

the disparity map and/or relevant spatial features that may

prove useful for semantic image segmentation and classifi-

cation.

In the case of the patch-based CNN, we explore the pos-

sibility of using input images taken from n distinct view-

points (where n ≥ 2) to achieve a single-entity classifica-

tion. We generate a 3D mesh representation of the coral reef

surface and perform classification on each mesh face/facet

to arrive at a 3D semantic segmentation of the coral reef sur-

face. We investigate the impact of different voting schemes

on the final classification accuracy. Furthermore, we pro-

pose the nViewNet architecture, which is capable of receiv-

ing a variable number of images (subject to a maximum

number) and learning an optimal combination of these im-

ages to yield an accurate a single-entity classification.

2. Background and Related Work

In recent years, CNNs have continued to push the limits

of accuracy for large-scale image classification tasks [17,

27, 31]. In the context of coral reef image classification, we

have previously investigated the VGG16 architecture [27]

which represents a significant improvement over previous

networks by its use of small 3 × 3 kernel filters instead

of the larger kernel filters common at the time. We have

also investigated the InceptionV3 architecture [31] which

improves upon previous CNN architectures via incorpora-

tion of an inception module that approximates an optimal

sparse CNN, thereby allowing the InceptionV3 architecture

to deepen (i.e., add layers) while staying within common

GPU memory constraints.

As CNNs have grown deeper over time allowing them

to learn more complex patterns, dealing with progressively

smaller gradient updates (i.e., the vanishing gradient prob-
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Figure 1: Computational pipeline for 3D reconstruction and annotation of a coral reef ecosystem.

lem) has become critical. The ResNet architecture [10]

addresses the vanishing gradient problem by incorporating

residual convolution blocks that attempt to fit a mapping

of the residual as opposed to computing a direct mapping.

By using skip connections that pass information directly

from the first layer of the block to the last, the ResNet ar-

chitecture preserves the gradient across several CNN lay-

ers thus allowing the network to deepen without the gradi-

ents becoming vanishingly small. In particular, the 152-

layer ResNet152 architecture has been shown to perform

particularly well on the task of coral reef classification [15].

Recent work has shown the ResNet152-derived features

(termed as ResFeats) to outperform conventional CNN-

derived features for binary and multi-class classification of

coral reefs [21, 22]. We adopt ResNet152 as the baseline

architecture for many of the models proposed in this paper.

Finally, we also consider the Inception-ResNetV2 architec-

ture [30], which combines the Inception architecture with

the ResNet residual block architecture.

Among the existing FCNN architectures for simultane-

ous semantic image segmentation and object classification,

we consider the FCN8s architecture [20] and the Dilation8

architecture [33]. The FCN8s architecture represents the

first successful attempt to repurpose an existing CNN archi-

tecture designed for image classification, i.e., VGG16, for

the task of semantic image segmentation. Long et al. [20]

eliminate the fully connected CNN layers in the VGG16 ar-

chitecture, replacing them with convolution layers, and em-

ploy transposed convolution to upsample the output. This

results in an end-to-end trainable model for semantic im-

age segmentation, eliminating the need for separate seg-

mentation and patch-wise classification phases. However,

the FCN8s architecture requires whole-image ground truth

segmentation maps for the purpose of training where the

training loss is evaluated by comparing the network output

against the ground truth segmentation map.

The Dilation8 architecture [33] incorporates enhance-

ments to the FCN8s architecture to improve accuracy. Di-

lation8 removes many of the max pooling layers in the

VGG16 base of FCN8s, thereby eliminating the need for

transposed convolution for upsampling. Rather than using

iteratively larger kernels to maintain a large receptive field,

Dilation8 effectively dilates the convolution kernel. Since

the number of kernel parameters are unchanged, the com-

putational requirements of Dilation8 are almost the same as

those of FCN8s. In this paper, we compare the performance

of the FCN8s and Dilation8 architectures with and without

the inclusion of a disparity channel.

Su et al. [29] formulate a multi-view CNN (MVCNN) as

a classifier network for 3D shape-based object recognition

from multiple images. The MVCNN architecture accepts

input from an array of 12 equidistant cameras and pools

the resulting views using an element-wise max operation.

Experimental results show that pooling of multiple views

in the MVCNN yields improved accuracy over single-view

CNNs when attempting 3D shape-based classification of an

object in an image. In our work, we relax the constraints

of the MVCNN to allow for a variable (n) number of views

from randomly-placed cameras.

In our work, we use weight sharing schemes simi-

lar to those used in Siamese networks [16, 19] and the

MVCNN [29]. Siamese networks learn a similarity func-

tion between two inputs instead of a simple classifier. Both

inputs are fed through identical networks with the same

learned weights. The similarity function is learned via

weight sharing and by using a contrastive loss function for

similarity comparison. We draw on this general idea in the

design of the proposed TwinNet and nViewNet architectures,

which take more than one image as input and share weights

in their underlying base architecture.

3. Underwater Image Data Acquisition

The underwater stereoscopic coral reef survey image

data used in the work reported in this paper were manually
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collected from coral reefs off the Florida Keys by a team

of swimmers and divers. An underwater stereo camera rig,

comprising of a GoPro Dual Hero camera system, was used

to collect the underwater video data while swimming over

sections of the coral reef. The stereo camera rig was carried

over the reef in a serpentine (i.e., lawn mower) pattern in

order to capture a complete section of the seafloor. Stereo

image pairs were extracted from the video data at a rate

of two frames per second. The resulting 2,391 stereo im-

age pairs were deemed to comprise the Underwater Stereo-

scopic Coral Reef Survey of the Florida Keys image data

bank (USCSF) and used for all the experiments reported in

this paper. The work reported in this paper was conducted

under permits granted by the Florida Keys National Marine

Sanctuary (FKNMS-2016-042, FKNMS-2017-035).

4. Stereoscopic FCNN Architecture

In this section we describe the proposed extensions to the

conventional FCNN architecture, enabling it to accept and

analyze stereoscopic image data as input. We propose two

extensions; the first involves feeding the stereoscopic dis-

parity as a distinct channel to the conventional FCNN, com-

plementing the conventional RGB input channels, and the

second, termed as the TwinNet architecture is based roughly

on the Siamese network architecture [16, 19] and accepts

both the left- and right-perspective images as input.

4.1. Image Data Collection

During image data collection for the proposed FCNN

models, it is necessary to generate dense pixelwise ground

truth segmentation maps that could be subsequently used

for training the models. Since we deal with stereoscopic

image data, we acquire both, a left-perspective image and a

right-perspective image. However, we create ground truth

segmentation maps only for the left-perspective images.

The creation of the ground truth segmentation maps is a

time-consuming process, especially in the case of under-

water image data, wherein the image clarity is often com-

promised on account of high water turbidity, ocean currents

and floating algae and debris. Consequently, we designed a

customized image annotation tool to streamline the process

of generating ground truth segmentation maps.

The customized image annotation tool provides two

methods for image segmentation: (a) superpixel genera-

tion via simple linear iterative clustering (SLIC) [1] and (b)

computation of graph cuts [7, 8]. The image annotation tool

allows the user to segment the input images and annotate

the image regions using predefined class labels. It has a

tunable parameter to allow for over-segmentation or under-

segmentation of the input image, and also offers modes for

automated annotation as well as manual annotation. A user

can quickly generate segmentation maps upon segmenting

the input image and annotating a subset of the resulting re-

gions. The annotation tool uses RGB histograms and Ga-

bor filter features to measure region similarity and performs

k-means clustering based on the similarity measure. If a

single region within a cluster is observed to possess a class

label, then that class label propagated to the remaining re-

gions within the cluster.

Using the aforementioned annotation tool, we were able

to quickly generate 413 dense semantic segmentation and

classification maps for training the FCNN models [20].

The ground truth semantic segmentation maps entail clas-

sification of each image pixel into one of the following

10 classes: (1) Acropora palmata, (2) Orbicella spp., (3)

Siderastrea siderea, (4) Porites astreoides, (5) Gorgonia

ventalina, (6) sea plumes, (7) sea rods, (8) algae, (9) rubble,

and (10) sand. Furthermore, we employ an ignore class for

regions that do not fall into one of the aforementioned cat-

egories. These include objects such as fish or regions that

are deemed unclassifiable by an expert. The ignore class

does not contribute to the loss calculations and is there-

fore never a classification output generated by the FCNN.

Furthermore, regions from the ignore class are not used

in computing the classification accuracy on the validation

set. The first four classes, i.e., A. palmata, Orbicella spp.,

Siderastrea siderea, and P. astreoides, represent the differ-

ent species of coral commonly found on reefs in the Florida

Keys. The remaining single-species class, i.e., Gorgonia

ventalina, represents the common sea fan. The remainder of

the classes are multi-species classes or general coral classes.

4.2. Image Data Preprocessing

Upon collection, we process the image data before input

to the FCNN models. Due to the large size of each image in

the dataset (2700 × 1400 pixels), it was deemed necessary

to split each image into four quadrants for further process-

ing on an Nvidia GTX 1080 GPU with a batch size of one.

Since the coral reef environment contains 10 classes of in-

terest, the preprocessing stage generates output images with

pixel values between 0 and 9 in the respective color chan-

nels. Furthermore, we also subtract the mean color value

of the training set from each input image to normalize the

image data before input to the FCNN.

4.3. FCNN with Disparity Channel

We first examine the use of stereoscopic disparity as a

means to leverage multi-view information in the proposed

FCNN models. The images are first rectified using the cam-

era calibration parameters. We create a disparity map using

a well-known semi-global block matching-based disparity

estimation algorithm [12] with a uniqueness threshold and

block size of 15, a contrast threshold of 0.5 and a disparity

range of 64. Upon creation of the disparity map, we inter-

polate the missing disparity data in the shadow regions of

the disparity map using an efficient image inpainting algo-

rithm [32]. The resulting disparity map is then regarded

as an additional fourth channel that is concatenated with
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the three RGB channels of the left-perspective image be-

fore input to the FCNN model. We compare the perfor-

mance of two FCNN architectures, i.e., FCN8s [20] and Di-

lation8 [33], using the standard three-channel RGB input

and the four-channel RGB plus disparity input, where the

RGB inputs are derived from the left-perspective image in

both cases.

To ensure experimental validity, we partition the im-

age dataset into two subsets, a training set and a testing

set using a 80:20 training set to testing set split ratio. We

train the FCNN models using the training set and then re-

port the model performance on the unseen testing set. The

overall pixelwise classification accuracy is reported across

all the coral reef classes. Since the pretrained Imagenet

weights [25] do not include a disparity channel, we train

each FCNN model from scratch. We train initially with a

relatively high learning rate of 1 × 10
−3 to learn quickly

some of the initial weights. We use the stochastic gradient

descent algorithm with a Nesterov momentum term and a

batch size of one as our optimization technique. We subse-

quently train the model using a learning rate of 1×10
−4 and

weight decay rate of 1× 10
−6 to refine the initially learned

weights. Each FCNN model is trained for 15,000 iterations

to ensure convergence, and the FCNN model with the high-

est validation accuracy is selected.

4.4. TwinNet: Stereoscopic FCNN

Instead of computing the disparity algorithmically us-

ing hand-crafted and/or pre-selected features derived from

the stereo image pair (as is done in the case of the dispar-

ity FCNN), we seek to design a deep network architecture

capable of learning the scene depth implicitly from the in-

put stereo image pair for use in subsequent classification.

We draw inspiration from the weight sharing schemes used

in Siamese networks [16, 19] and the MVCNN [29]. Our

base architecture is derived from the front-end of the Di-

lation8 architecture [33]. The Dilation8 architecture is, in

turn, based on the VGG-16 architecture [27], but employs

dilated convolutions and fewer max pooling layers.

As depicted in Figure 2(a), the left- and right-perspective

images are both input to the Dilation8 base architecture, and

the weights are shared at this point in the network. The left-

and right-perspective outputs of the base architecture are

then fed to a Siamese subnetwork comprising of two distinct

submodules whose weights are learned independently. The

outputs of the Siamese subnetwork are then fed to a stereo

module consisting of three convolution layers. Each per-

spective’s stereo module consists of three convolution lay-

ers and RELU activations with a two-dilated kernel size of

three. The separated outputs of the stereo module are then

concatenated on the channel axis and fed to a collapse mod-

ule, which uses a convolution layer with a kernel size of

one to reduce the number of channels to the total number

of classes. At this point, the image is upsampled iteratively

Table 1: Results of FCNN stereo and disparity architectures

Architecture Accuracy (%) Input

FCN8s 50.45 RGB

Dilation8 62.84 RGB

FCN8s 53.82 RGB + Disparity

Dilation8 64.02 RGB + Disparity

TwinNet (left image) 61.93 RGB

TwinNet 66.44 RGB Image Pair

through transposed convolution and skip connections until

it is returned to its original size as depicted in Figure 2(a).

We compare performance of the proposed TwinNet ar-

chitecture to that of its base Dilation8 architecture. Further-

more we compare the performance of the TwinNet architec-

ture under two scenarios, i.e., when provided with a stereo

image pair and when provided only the left-perspective im-

age as input. As before, we train our models with the train-

ing set and then report the model performance on the un-

seen testing set. The overall pixelwise classification accu-

racy across all classes is reported.

The base architecture weights are initialized using the

Imagenet pretrained weights [25]. To retain the benefits of

the pretraining, we freeze the base architecture weights and

train the additional modules initially with a learning rate of

1 × 10
−3. We use a batch size of one and stochastic gra-

dient descent with a Nesterov momentum term as our opti-

mization technique. We then train the entire model using a

learning rate of 1×10
−4 and weight decay rate of 1×10

−6.

Each stereo FCNN model is trained for 7,000 iterations to

ensure convergence, and the FCNN model with the highest

validation accuracy is selected.

4.5. Performance of the FCNN Architectures

Table 1 summarizes the results of our experiments on

extending the FCNN architecture for stereoscopic image

input. The FCNNs with inclusion of the disparity chan-

nel were observed to yield a small increase in classification

accuracy over their counterparts that utilize only the three

RGB color channels. In the case of FCN8s, we observe a

3.37% increase in classification accuracy and in the case of

Dilation8 [33] we see a corresponding 1.18% improvement.

These results show that inclusion of disparity information

provides some benefit in terms of classification accuracy.

The performance of the TwinNet architecture compares well

with that of Dilation8 when only the left-perspective im-

age is used as input. However, the TwinNet architecture ex-

hibits marked improvement over Dilation8 when both, the

left-perspective and right-perspective images are utilized.

Therefore, it is reasonable to conclude that the intermediate

layers of the TwinNet architecture learn more discriminative

features from the stereo image pair than from a single im-

age. Furthermore, the increased classification accuracy of
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(a) TwinNet Architecture

(b) nViewNet Architecture

Figure 2: The proposed TwinNet and nViewNet architectures: Conv denotes the convolution layer, C denotes the channels and

FC denotes fully connected.

the TwinNet architecture over Dilation8 with the incorpora-

tion of the disparity channel demonstrates the superiority of

the implicitly learned depth features over the hand-crafted

RGB and disparity features.

5. Multi-View Patch-Based CNNs

5.1. Image Data Collection

A subset of the collected images from our coral reef im-

age dataset (USCSF) was annotated by experts to provide

ground truth pixel classifications. During the annotation

process, an individual pixel in an image is selected in a

pseudorandom fashion. The pixel is shown along with its

spatial context to an expert who then assigns it to one of

the following 10 classes: (1) Acropora palmata, (2) Orbi-

cella spp., (3) Siderastrea siderea, (4) Porites astreoides,

(5) Gorgonia ventalina, (6) sea plumes, (7) sea rods, (8)

algae, (9) rubble, and (10) sand.

We use a photogrammetric processing tool (Agisoft Pho-

toscan) to generate a 3D mesh reconstruction of the underly-

ing coral reef surface from our image dataset (USCSF) and

determine the camera locations from which the images were

taken. We assign a unique ID to each face of the 3D mesh.

We match each pseudorandomly annotated pixel in an im-

age with its corresponding mesh face ID via backprojection.
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Figure 3: Projection from a 3D mesh to multiple images

As depicted in Figure 3, other views of the annotated mesh

face are obtained by projecting the center of the mesh face

into images using a standard projective camera model with

extrinsic parameters (camera location and orientation) and

intrinsic parameters (focal length, camera center, and radial

distortion) obtained via an optimization procedure. In short,

each mesh face ID is assigned a single class and associated

with its corresponding location (patch) in one or more im-

ages. Our final dataset is comprised of 6,525 labeled meshes

with 138,405 corresponding image patches.

5.2. Voting Networks

We propose a CNN architecture to handle a variable

number of views of the underlying coral reef. Since our

image data (USCSF) was extracted from survey video ac-

quired in a serpentine fashion, any arbitrary point on the

coral reef surface is likely to have been captured in multiple

images from multiple points of view. The number of views

for each coral reef surface point will vary and so, too, will

the camera locations with respect to the points on the coral

reef surface.

Our first approach to exploiting multiview information

is incorporating a simple voting scheme within the CNN

architecture. We train the ResNet152 [10] CNN using a

train/test stratification scheme where 80% of the data is used

to train the network and 20% is used to test it. Each of

the images from the training set (accompanied by the corre-

sponding patch class labels) is used to train the ResNet152

CNN [10]. The base architecture weights are initialized us-

ing the Imagenet pretrained weights [25]. We replace the

last layer (i.e., the fully connected layer) in the ResNet152

CNN with a different fully connected layer wherein the

number of outputs equals the number of coral reef classes

in our dataset. To retain the benefits of the pretraining, we

freeze the base CNN weights and train the fully connected

layer with a learning rate of 1×10
−3. We use a batch size of

Table 2: Results of multiview patch-based CNNs

Network Architecture Accuracy (%) Batch Size

ResNet152 85.54 32

ResNet152 + Simple Voting 90.70 32

ResNet152 + Logit Pooling 91.00 32

nViewNet-4 93.52 16

nViewNet-8 94.26 16

64 and stochastic gradient descent with a Nesterov momen-

tum term as our optimization technique. We then train the

entire model using a learning rate of 1 × 10
−4 and weight

decay rate of 1× 10
−6.

Each image corresponding to a mesh face in the valida-

tion set is then input to the trained network. Each image

votes on a classification for that face, and the class label

with a plurality of votes is output. As an alternative, we

implement a pooling method which sums the logit values,

essentially weighting each vote by its confidence value.

5.3. The nViewNet Architecture

We propose the nViewNet architecture to handle a vari-

able number of multiple viewpoint images. The nViewNet

uses the ResNet152 [10] (without the fully connected layer)

as a base architecture and, in similar fashion to the TwinNet,

the base architecture weights are shared across all inputs. To

ensure constant memory requirements and ease of training,

we set a cap on the number of viewpoints to be included for

classifying each mesh face. If the number of available view-

points exceeds this preset cap or maximum, the additional

viewpoint images are ignored and the retained viewpoint

images selected at random.

Each viewpoint image, up to the preset maximum, is in-

put to the base architecture, and the outputs fed to a collapse

module. The collapse module takes two input images, each

with C channels, and concatenates them channel-wise. It

then reduces the concatenated data, which has 2C channels,

back to C channels using a 2D convolution with a kernel

size of one followed by another 2D convolution layer with

a kernel size of three. The collapse module is invoked recur-

sively to combine pairs of images in a tree-like fashion until

only a single output remains as depicted in Figure 2(b). We

use a linear transform to reduce the output of the collapse

module to a vector of logits with a length equal to the num-

ber of classes. In the case where a mesh face is visible in

fewer than the maximum allowable number of viewpoints,

we invoke the collapse module with the existing viewpoints

until the maximum is reached. We compare the results us-

ing a maximum of four viewpoints (nViewNet-4) and a max-

imum of eight viewpoints (nViewNet-8) to the previously

proposed approaches.

The base architecture weights for nViewNet are initial-

ized using the weights determined via training on the in-
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(a) ResNet152 (b) ResNet152 with Logit Pooling (c) nViewNet-8

Figure 4: Confusion matrices for three patch-based multi-view architectures. We abbreviate Acropora palmata as A. palm,

Gorgonia ventalina as Gorg, Orbicella spp. as Orb, Porites astreoides as P. ast, and Siderastrea siderea as S. sid.

dividual viewpoints. This initializes the base architecture

with feature outputs that are already useful for classifica-

tion. We ensure that the training set and testing set contain

the same images for nViewNet and that the voting network

model is trained on individual viewpoints to maintain ex-

perimental validity. To retain the benefit of the pretraining,

we freeze the base architecture weights and train the addi-

tional modules initially with a learning rate of 1×10
−4. We

use stochastic gradient descent with a Nesterov momentum

term as our optimization technique.

5.4. Performance of Multiview PatchBased CNNs

Table 2 summarizes the experimental results for the vot-

ing, logit pooling and nViewNet architectures. All archi-

tectures are observed to outperform the underlying base ar-

chitecture, i.e., ResNet152 [10], when used by itself. Al-

though logit pooling is essentially tied to simple voting, it

does improve upon the latter. The best nViewNet architec-

ture i.e., nViewNet-8, is seen to outperform its logit pool-

ing and voting counterparts by 3.26% in terms of classifica-

tion accuracy thus demonstrating the advantages of learn-

ing combined features from multiple viewpoints. Although

the nViewNet architecture has an upper bound on the num-

ber of viewpoints it can handle, both, the nViewNet-4 and

nViewNet-8 architectures were seen to outperform their vot-

ing and logit pooling counterparts that exploit every avail-

able viewpoint (with no imposed limit). The voting and

logit pooling architectures however, are easier to implement

and outperform the underlying ResNet152 [10] base archi-

tecture by a significant margin.

6. Conclusions and Future Work

In this paper, we showed how integrating underwater

coral reef images from multiple viewpoints could improve

the classification accuracy of CNNs in the context of se-

mantic segmentation and 3D reconstruction of coral reefs.

We explored two FCNN architectures, one which uses the

disparity map computed from a stereoscopic image pair

as an additional input channel, complementing the three

RGB color channels, and the other, termed as the Twin-

Net which is based on a Siamese network architecture and

accepts both the left- and right-perspective images of the

stereoscopic image pair as input. We also explored a patch-

based CNN, termed as the nViewNet that accepts a variable

number of multiple-viewpoint images as input while gen-

erating a 3D semantic segmentation of the coral reef. We

also explored the incorporation of voting and logit pooling-

based schemes within the conventional patch-based CNN.

Our experimental results showed that the aforementioned

enhancements to the FCNN and patch-based CNN architec-

tures resulted in superior performance in terms of classifi-

cation accuracy compared to the corresponding base CNN

architectures, i.e., Dilation8 [33] in the case of the FCNN

and ResNet152 [10] in the case of the patch-based CNN.

In our future work, we plan to explore methods for ex-

ploiting a variable number of viewpoint images with no up-

per bound and without image repetition. We also plan to ex-

plore extensions of the logit pooling scheme that would dis-

card low confidence predictions and defer to human judg-

ment in such cases. Our long term goal is to develop an

end-to-end trainable deep learning-based simultaneous lo-

calization and mapping (SLAM) scheme for semantic 3D

reconstruction of coral reefs from image and video input.

To that end, we also intend to explore ways of combining

deep learning-based SLAM with Bayesian nonparametric

hierarchical topic modeling schemes [9].
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