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Abstract

Anomaly detection on the road traffic has vast applica-

tion prospects in urban traffic management and road safety.

Due to the impact of many factors such as weather, view-

points and road conditions in the real-world traffic scene,

anomaly detection still faces many challenges. There are

many causes for vehicle anomalies, such as crashes, vehicle

on fires and vehicle faults, which exhibits different unknown

behaviors. In this paper, we propose an anomaly detec-

tion system that includes three modules: background mod-

eling module, perspective detection module, and spatial-

temporal matrix discriminating module. The background

modeling analyses the traffic flow to obtain the road seg-

mentation results, and the vehicle flow superposition is used

to obtain the continuous stationary region. The perspective

detection module gets the perspective map by the first de-

tection result, through which the image is cropped to uni-

form scale for different vehicles and re-detection. Finally,

we get all anomalies by constructing spatial-temporal in-

formation matrix with the detection results. Furthermore,

all anomalies are merged through the non maximum sup-

pression (NMS) and the re-identification model, including

spatial and temporal dimensions. The experimental results

show that our system is effective in the Track3 test-set of

NVIDIA AI CITY 2019 CHALLENGE, which finally ranked

first in the competition, with a 97.06% F1-score and 5.3058

root mean square error (RMSE).

1. Introduction

Anomaly detection of traffic accidents plays an impor-

tant role in urban safety, where abnormal traffic events will

greatly reduce traffic efficiency. As more and more traf-

fic cameras are deployed to record road information, it

is important to develop an efficient, universal, automated

anomaly detection method. However, the real-world traf-

fic cameras record a wide range of viewpoints, weather,

and road conditions. These issues make it difficult to de-

sign general purpose anomaly detection methods. There-

fore, anomaly detection of traffic accidents is a meaningful

task that still has many challenges to be solved.

As a basic problem, anomaly detection has been well-

studied within diverse research areas and application do-

mains. One definition is to pick out an instance different

from other instances in the data and this selected instance

is defined as an exception [3]. In recent years, anomaly de-

tection methods based on deep learning have been rapidly

developed. For example, supervised deep anomaly detec-

tion involves training a deep supervised binary or multi-

class classifier, using labels of both normal and anomalous

data instances [1].

Normal data is comparably easier to obtain, so semi-

supervised anomaly behavior detection has been developed.

A common way is using deep auto-encoders [4, 5] to train

normal data in a semi-supervised way. Sufficient train-

ing samples of normal class auto-encoders would produce

low reconstruction errors for normal instances, over unusual

events [28, 25]. Despite these methods have achieved great

development, especially on some anomaly data sets, such

as UCSD [17] and CUHK [15] Avenue, which are homolo-

gous data. Most of them are not satisfying when faced with

some heterogeneous scenes like Shanghai [16] Tech. So it

is inapplicable for the road traffic with more complex and

unknown scenarios. In addition, the anomaly data is diffi-

cult to acquire so that these methods are hard to cover all

the situations in the real-world.

With the rapid development of deep learning in recent

years, it has achieved great success in basic computer vision

problems, such as image classification [22] and object de-

tection [14], and the accuracy of classification even exceeds

that of humans. Object detection has also reached a rela-

tively mature level. In particular, face detection has been

widely used. In this task, we use the state-of-the-art de-
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Figure 1. Overview of the architecture of our anomaly detection framework, which consists of background modeling module, perspective

detection module, and spatial-temporal matrix discriminating module.

tection model, a ResNet50 [9] based Faster R-CNN model

with feature pyramid networks [12] (FPN) and Deformable

Convolutional Networks [6] (DCN) to detect vehicles in the

image. In order to effectively capture all the vehicles in the

video, a perspective detection method is adopted, which is

detailed in section 3.2. The proposed system only depends

on the detection results, which means a better generalization

ability.

The main contributions of this article are summarized as

follows:

• We present an unsupervised road segmentation method

based on traffic flow analysis. It can effectively elimi-

nate the interference of vehicles outside the road.

• We introduce the perspective relationship into the vehi-

cle detection of the traffic scene, which can effectively

improve the recall while ensuring accuracy.

• We design an anomaly discrimination method based

on spatial-temporal information matrix, which trans-

forms the analysis of a strip trajectory into an analysis

of spatial position. It can not only accurately locate

the anomaly start and stop time, but also effectively

improve the robustness of the system.

Based on the above technical contributions, we propose a

high performance traffic anomaly detection system. We

evaluate on the Track 3 test-set of the NVIDIA AI CITY

CHALLENGE [19], and the experimental results show the

effectiveness of the system in real-world scenarios. We

ranked first among the 23 participating teams, and we ob-

tain the F1-score metric at 0.9706 and the RMSE metric at

5.3058.

2. Related work

Vehicle detection, as a basic module of road analysis,

plays an important role in anomaly analysis. With the

development of deep learning, continuous improvement is

achieved in the field of detection, including [21, 13, 24, 6].

Our detection results also benefit from these methods.

The anomaly detection has been well-studied within di-

verse research areas and application domains. Benefit from

the widespread application of convolutional neural net-

works in computer vision, the current mainstream meth-

ods have shifted from traditional machine learning methods

to deep learning methods. The current mainstream meth-

ods are mainly including: semi-supervised, unsupervised,

hybrid models, and one-class neural networks [2]. Semi-

Unsupervised mainly includes auto-encoder [4] to fully

learn normal samples, which detects anomalies by compar-

ing normal and abnormal results. In addition, the method of

generative adversarial [11] has been developed. Unsuper-

vised often uses reinforcement learning to learn anomalies

[7, 10], while Hybrid uses a combination of deep learning

features and traditional algorithms for anomaly detection

[8].

For traffic videos, there are several attempts to detect hu-

man violence or anomaly events in crowd scene [18, 20, 26].

In [26], a deep anomaly ranking model is proposed to pre-

dict high anomaly score in the testing videos. At the same

time, some work is designed to detect a specific anomalous

event, but the anomalies in the actual scene are complex and

changeable.

The problem of vehicle anomaly detection for road

scenes has received wide attention with the development of

smart cities. In NVIDIA AI CITY CHALLENGE 2018[19],
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[30, 27] use the background modeling method to effectively

eliminate the interference of the mobile vehicle, and ob-

tains the location of the static region to analyze, which has

achieved competitive results. In this paper, we further ana-

lyze the traffic information and construct a dynamically an-

alyzed pipeline based on the spatial-temporal information

matrix, which is able to effectively adapt to a changeable

environment and can be used in real-world scenarios.

3. Method

We construct a pipeline of anomaly detection frame-

work, which contains three steps. The first step uses the

traffic flow analysis to model the background and acquire

the perspective detection module to obtain the detection re-

sults. Then, we utilize the detection results to construct the

spatial-temporal information matrix, and judge the anomaly

by the spatial-temporal matrix, and finally backtrack and

merge the obtained anomalies to get an accurate time.

3.1. Background and space modeling

In fact, the concerned anomalies always happen in the

road. However, the vehicles beside the house or in the park-

ing lot can interfere with our results. But it is very diffi-

cult to effectively get the segmentation image of roads us-

ing a certain model in such multiple perspectives and com-

plicated situations. A unsupervised segmentation method

based on traffic flow analysis is applied, which is simple

but effective.

Figure 2. From left to right, it respectively represents the effect of

binarization and filtering small connected areas. As shown in the

middle figure, the small connected regions are often interference

areas such as parking lots or houses.

In order to obtain the traffic information, we continu-

ously weight and overlay the results of the detection result

of each frame to the corresponding position, so as to ob-

tain the frequency map of the vehicle in the global position.

After normalizing the whole image, we perform binariza-

tion to obtain a segmentation map of the traffic flow. For

example, as shown in Figure 2, several connected regions

can be seen, in which the small connected regions are often

the vehicles in parking lots or beside the house. we filter

the connected regions with smaller areas to eliminate these

disturbance in the final segmentation result.

To obtain the region of background and stationary ve-

hicles, a method of averaging images similar to [30] is

adopted, which continuously calculating the weighted sum

of the input frames in the whole video, which can enhance

the static parts and suppress the moving parts in objects. In

order to eliminate the influence of slow traffic as much as

possible, we average images in a fixed interval instead of

every frame, which can be expressed by the formula,

AV G image = (1− α)×AV G image+ α× framej ,

j = i× interval + start frame.
(1)

As shown in Figure 1, the image overlay can effectively

eliminate the moving traffic and extract the static vehicle.

3.2. Perspective detection

After filtering out the moving vehicles, we need to detect

the stationary vehicles. But in the traffic scene, the small

targets in the distance are easily missed, which leads to the

missed detection of anomaly events. So as to solve this

problem, we use the perspective relationship to normalize

near and far targets to a smaller range of fluctuations, thus

ensuring the recall rate for small targets in the distance.

In this section, we first introduce how to estimate per-

spective relationship and then crop the local image to an

uniform scale.

Figure 3. The perspective geometry between vehicles and camera.

Perspective relationship estimation. The perspective

is widely used in vehicles, crowds, license plate detection

and other scene with obvious perspective [23, 29]. For the

perspective, the value of each pixel is defined as the number

of pixels that one meters required in the image of the real

scene [32], and the corresponding relationship of the size

of the objects is similar in the image. Figure 3 shows the

perspective relationship of the visual traffic camera. We can

solve the perspective by

yt = f(C −H)/zf ,

yb = f(C)/zf ,
(2)

where yt and yb respectively represent the top and bottom

of the vehicle, so we can get the following mapping rela-

tionship. The proportional relationship between the target

size in the figure and its in the real world can be expressed
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Figure 4. Firstly, according to the initial detection result, the perspective map is solved with linear regression map, and then the area is

cropped to ensure that the capacity of each region is consistent. The final detection result is obtained through re-detection. As shown in the

upper right corner, after the divided area has been resized, the vehicle maintains a consistent size.

as:
h

H
=

1

C −H
× yh, (3)

Therefore, we assume that the difference between the height

of the vehicle is uninfluential. So we use a constant H .

Then, for the same camera, k = H
C−h

is also a constant,

which can be simplified as h = k×(yh−y0), where y0 is the

position where the horizontal line starts. The relationship

can be expressed as

h = ky + b, (4)

where b = −k×y0 and h is obtained by the initial detection

result. We set hi =
√
width× height, y is the y − axis

position of the corresponding detection box. We obtain k
and b by linear regression.

Based on k and b, the scales of different regions in the

image are normalized. The area of the region is divided

according to the number of targets that can be accommo-

dated in the region. Here, we assume that the height of each

cropped region with the same capacity for vehicles,

A =

∫ y2

y1

1

h
dy =

∫ y2

y1

1

ky + b
dy, (5)

where A donates the capacity of the region between y1 and

y2.

For too small targets, the details of the contours have

been lost. Even if enlarged, it is difficult to detect. So we set

the minimum target size that can be detected in the image

is h0 = 8. Then the starting point of the integral is solved

that y0 = h0−b
k

. That means, the target with the height of

6 pixels in the images will be not considered. In the ex-

periment, the capacity of the region is set to 3. Then the

scale-normalized image is subjected to secondary detection

to obtain the final detection result, which improves the de-

tection of small targets. This process is visualized in detail

in Figure 4. Besides, we use FPN-DCN network as our de-

tector, where ResNet50 is used as backbone, and finetune it

on vehicle detection datasets, which is described in section

4.1.

3.3. Spatial­temporal matrix discrimination

The position and time information of the stationary ve-

hicle is obtained through the perspective relationship detec-

tion module. But not all detected stationary vehicles are

anomaly, e.g., the vehicle waiting for the red streetlight and

some false positive detection. At the same time, the deter-

mination of the start and end time for the same anomaly

according to the detection result is important but difficult.

Object tracking and optical flow are often employed to ana-

lyze the trajectory of the same vehicle. But the result of the

trajectory reduction is often sensitive to the quality of the

video and the interference of other vehicles in the road. In

order to locate and identify each anomaly more robustly, we

no longer analyze each vehicle and its trajectory, but instead

analyze each location.

We judge the anomaly event according to the informa-

tion of the vehicle dynamics represented by the matrix of

the original image size. The process of matrix update is

summarized in Algorithm 1.
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Algorithm 1 Updating spatial-temporal matrix

Input: The time of the current frame, t; The set of detected

boxes B; Six information matrices, Vold; The segmen-

tation mask,S;

Output: Six updated information matrices Vnew;

1: initialize two zero matrices Mdetected and Mscore;

2: for each b ∈ B do

3: if scoreb > 0.3 then

4: Mdetected[b] = 1;

5: Mscore[b] = maximum(Mdetected[b], score);
6: end if

7: end for

8: Mundetected = (1−Mscore) · S;

9: Mdetected = Mdetected · S;

10: Mscore = Mscore · S;

11: Vdetected = Vdetected +Mdetected;

12: Vscore = Vscore +Mscore;

13: Vundetected = Vundetected +Mundetected;

14: Vundetected[Mdetected] = 0;

15: Vstart[Vdetected == 1] = t;
16: Vend[Vdetected > 0] = t;
17: Mdelay = Vend − Vstart

18: find the location with the most response of Mdelay, pos;

19: if Mdelay[pos] > thresholdtime then

20: get the binarized matrix Mbinary where

Vdetected[pos]− Vdetected ≤ 1;

21: get a connected region of the peak position as

the anomaly region with breadth first search (BFS) of

Mbinary;

22: if Vscore

Vundetected

> thresholdscore then

23: start or keep anomaly status;

24: end if

25: if Vundetected[pos] > thresholdundetected then

26: finish the anomaly and output the anomaly in-

formation;

27: end if

28: end if

29: Vstate[Vdetected > thresholddetected] = 1;

30: Vstate[Vundetected > thresholdundetected] = 0;

31: Vdetected[(Mdetected + Vstate) > 0] = 0;

32: Vscore[(Mdetected + Vstate) > 0] = 0;

33: return Vdetected, Vundetected, Vstate, Vscore, Vstart, Vend;

Specifically, there are a total of six information ma-

trices, where Vdetected records the number of times each

pixel is continuously detected, and Vundetected records the

number of times each pixel is not detected continuously.

Vstate records the status of each pixel (whether or not

this position is in the anomaly region). Vscore records

the total detection score for each pixel. Vstart records

the start time of the most recently detected for each pixel

and Vend records the time each pixel last remained suspi-

cious. Vundetected, Vdetected, Vscore, Vstate are in the form

of heat-maps, and Vstart, Vend just continually update the

time recorded. The thresholds is described in detail in sec-

tion 4.1.

The establishment of spatial-temporal information

matrix. Through the road segmentation map S obtained

in section 3.1, the counting matrix Vdetected and the scor-

ing matrix Vundetected are continuously updated only for

the new static detection result of each frame in the road.

When the position is continuously detected, the position

enters an anomaly suspicious state. The suspicious state

is updated by the continuous undetected matrix Vundetected

while time-related information Vstart, Vend is recorded for

each location. A major criterion for anomaly suspend in

the road is the length of the suspend time. We only ana-

lyze the location that enters the suspicious state and lasts

for the longest time at a time. When the duration is too long

(greater than 60s), the position is used as the starting point

in breadth-first traversal to obtain a connected region with

similar count values in Vdetected as the anomaly region. As

an anomaly region, it simultaneously outputs the start time

when the position is detected. Until the suspicious state of

the position is updated, the end time is output. The detected

average score of the position is taken as the score of the

anomaly. Each anomaly includes the location of the region,

start time, end time and score.

The results merge. For acquiring the anomaly results,

we first apply the NMS method to merge the spatial loca-

tions. The earliest time for the anomaly update of IOU

greater than a certain threshold is the start time, and the

latest time is the end time. In particular, for anomalies with

a time interval of less than 10s, we use the re-identification

model to compare features in the two regions to eliminate

the difference in displacement due to accidents. Due to the

average image, there is a delay in the time when the static

vehicle is detected. We perfume time backtracking for the

original image of the anomaly region in fixed time length.

When the intersection over-union (IOU) is greater than 0.5,

update the start time of the anomaly. At the same time, if

the vehicle is continuously detected in this area, we will

continue to backtrack until it is not detected.

4. Experiments

In this section, the experimental results of the proposed

method is present in detail, and then introduce the dataset

of NVIDIA AI CITY 2019 CHALLENGE Track3, and the

corresponding evaluation method. Finally, our system is

evaluated on this challenge.

4.1. implementation details

Background and space modeling. We normalize the

frequency obtained by superimposing the traffic flow. The

threshold of binarization is 0.1. In each part, the filtering
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Figure 5. Example results on Track3 test-set. By averaging the image, we can get a delayed start time of the anomaly, and then we get a

more accurate time positioning by backtracking the detection result of the original image.

area is 2,000 pixels for a small connected region. The inter-

val for obtaining a static overlay is 4 frames, and the weight

of the overlay is 0.05.

Figure 6. Qualitative detection results. Several difficult scenes

with obvious perspectives were picked, and our perspective de-

tection module shows great performance.

Perspective relationship detection. According to the

perspective relationship, we take an image with an integral

length of yi+1−yi = 3 and the minimum target size is h0 =

8. Regarding training the detection network, we use UA-

DETRAC [31] and VisDrone [33], part of the AIC train-set,

where UA-DETRAC dataset consists of 10 hours of videos

captured with a Cannon EOS 550D camera at 24 different

locations at Beijing and Tianjin in China. There are 84k

frames and more than 578k annotated bounding boxes in

this dataset. In order to maintain consistency with AIC, we

use the Gaussian blur enhancement mentioned in [27]. The

VisDrone [33] is primarily captured by drones and contains

a wide range of scenes ,time and weather, as well as a large

number of small target objects. The detection network uses

ResNet50 as the Backbone, joins the fast RCNN network of

FPN and DCN, and trains with three shortest size of [800,

1000, 1200].

Spatial-temporal matrix discriminattion. The

threshold for the normal state transition to the suspi-

cious transition state is 6 consecutive frames detected,

thresholddetected = 6, while the threshold for the

suspicious transition state to the normal state transi-

tion is 8 consecutive frames, thresholdundetected =
8. The shortest time threshold for output anomaly
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F1 RMSE S3

Our method 0.9706 5.3058 0.9534

Table 1. Our results on Track3 test-set

thresholdtime = 60s, and the minim score threshold for

anomaly thresholdscore = 0.8. In addition the anomaly

NMS threshold is 0.8. The Reid model uses in this task is

the same as the model we used in NVIDIA AI CITY CHAL-

LENGE TARCK2.

4.2. Track3 dataset

The Track 3 train-set and test-set of NVIDIA AI CITY

CHALLENGE 2019 each contain 100 video, every video

with a length of about 15 minutes, a frame rate of 30 fps

and a resolution of 800 × 410. It may include anomalies

caused by crashes, stalled vehicles. The main goal of the

task is to detect these anomalies in the video, and give the

start time and confidence score.

Evaluation for track 3 will be based on model anomaly

detection performance, measured by the F1-score, and de-

tection time error, measured by RMSE. Specifically,the

track 3 score will be computed as

S3 = F1× (1−NRMSE), (6)

where is the F1-score and is the normalized root mean

square error (RMSE). The score ranges between 0 and 1,

and higher scores are better. A true-positive (TP) detec-

tion will be considered as the predicted anomaly within 10

seconds of the true anomaly. The normalization of RMSE

will be done using min-max normalization with a minimum

value of 0 and a maximum value of 300.

4.3. Experimental results

We evaluate our method on the Track 3 testing data. As

showed in Table 1, we achieve 0.9706 F1-score while detec-

tion time error is only 5.3058 seconds, which demonstrates

our proposed methods superiority and robustness. Local S3

score is obtained to 0.9534 by Equation 6. The final learder-

board results among all the teams are shown in Figure 5, we

achieve 0.9534 S3 score and rank the first place among all

the participant teams.

5. Conclusion

Stationary vehicles in the road tend to be traffic anoma-
lies. Vehicles moving normally or parking in the parking
lots, beside the house and other places outside the road will
cause interference to the anomaly detection. We propose an
anomaly detection system that can reduce the non-anomaly
interference to the maximum extent. Firstly, we quantify the
frequency statistics of the spatial traffic, binarize and filter
the small independent connected regions to achieve unsu-
pervised segmentation of the road, thereby eliminating the

Figure 7. Compared results on the Track 3 test-set from the top 10

on the leaderboard.

interference of factors outside the road. the static objects is
enhanced by continuously superimposing the input frames
so as to eliminate dynamic traffic disturbance. In order to
maximize the accuracy and recall rate of the detector, we
utilize a perspective relationship transform both distant and
near areas into a uniform scale, and then apply the state-
of-art detector to get all vehicles. Furthermore, the spatial-
temporal information matrix is used to analyze the anomaly
of each position in the space. Finally, the NMS and Reid
modules are applied to merge the anomalies to obtain the
start and end time of the final results. Results on NVIDIA
AI CITY CHALLENGE 2019 show our proposed method
is effective on various scenes of traffic videos, which gets
a 97.06% F1-score and 5.3058 RMSE. In future work, we
plan to replace the detection result with vehicles density
map to achieve a more continuous estimate of the vehicle’s
position and probability distribution, as well as improving
the accuracy of time estimation.
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