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Abstract

Understanding large-scale video traffic big data is the

new frontier of today’s AI smart transportation advance-

ment. The AI City Challenge 2019 is the third sequel

of a yearly event that draws significantly growing atten-

tion and participation. This paper presents works con-

tributed to the three Challenges Tracks. In Track 1 City-

Scale Multi-Camera Vehicle Tracking, we developed a new

multi-camera fusion method by extending the state-of-the-

art single-camera tracking-by-detection with site calibra-

tions. Our approach jointly optimizes the matching of vehi-

cle image features and geometrical factors including trajec-

tory continuity, vehicle moving directions and travel dura-

tion across views, to effectively fuse tracks and identify ve-

hicles across 40+ cameras in a city-wide scale. In Track 2

City-Scale Multi-Camera Vehicle Re-Identification, we pro-

pose a Pyramid Granularity Attentive Model (PGAM) for

ReID by improving the recent Region-Aware deep Model

(RAM) with a pyramid design and training strategy im-

provements. In Track 3 Traffic Anomaly Detection, we

improved the 2nd-best method from AIC2018 with refined

event recognizers of stalled vehicles with back-tracking to

accurately locate event occurrence. The proposed methods

achieve compelling performance in the leaderboard among

80+ world-wide participant teams.

1. Introduction

Emerging AI technologies are transforming our world in

making everyday life more convenient, secure, and inno-

vative. Among the growing fronts, immense opportunity

exists to make transportation systems smarter and effective.

Traffic big data generated from existing street cameras and

vehicle sensors are the potential gold mine that are yet to be

exploited but can unlock huge potential to improve traffic

systems and infrastructure. However progress in this front

has been limited by the lack of inter-discipline expertise, de-

ficient high-quality data, inadequacy model and platform.

The AI City Challenge Workshops 1 are organized with

the aim to help address these limitations and encourage re-

search and development advancing Intelligent Transporta-

tion System (ITS). The AI City Challenge 2019 (AIC19)

is the third sequel following the growing participation in

AIC17 [31] & AIC18 [32], targeting at three Challenge

Tracks: (T1) Track 1 contest focuses on real-world vehicle

tracking from multiple cameras deployed at 5 sites span-

ning over 4 miles at a city-scale (the CityFlow dataset [38]).

State-of-the art vehicle detections, single-camera tracking

baselines, and camera/site calibrations are provided in the

contest platform. The key challenge is then on effective in-

formation fusion of identified vehicles under tracking over

the city-wide camera network, with proper handling of view

variabilities and uncertainties. (T2) Track 2 contest focuses

on the re-identification of vehicles from the same CityFlow

dataset [38] by matching pre-cropped vehicle images in

bounding boxes. (T3) Track 3 contest aims to detect ab-

normal traffic incidences from real-world traffic videos pro-

vided by US DOT, including atypical stalled vehicles arisen

from emergencies, breakdowns, or crashes.

This paper describes methods and results submitted to

all three AIC19 contests, with evaluations performed by the

contest organization. Our team ranks 17 (out of 22 in T1,

S1 = 0.1634), 50 (out of 84 in T2, mAP = 0.2965), and 6

(out of 23 in T3, S3 = 0.6997) in the AIC19 leaderboards

for the three Challenge Tracks, respectively, at the end of

challenge submission at May 10, 2019.

T1 Challenge: City-Scale Vehicle Tracking. The con-

test performs upon the CityFlow benchmark [38], a city-

scale street data collected over 40 cameras across 10 inter-

sections in synchronized HD videos. State-of-the-art base-

line vehicle detection results (YOLOv3 [33], SSD512 [22],

and Mask-RCNN [12]) and baseline single-camera tracking

results (DeepSORT [46], TC [39], and MOANA [37]) are

1https://www.aicitychallenge.org/
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Figure 1. Overview of the proposed city-scale multi-view tracking for AIC19 Challenge. (Top) Sampled frames showing several

single-view tracking of a vehicle to be fused. (Middle) The proposed multi-view tracking takes single-view detection/tracking trajectories

as input, and leverage geographical and site calibration for fusion optimization, using both image ReID features and geometry features.

all provided to participant teams. This contest setup is based

on a reasonable assumption [38], that the city-scale vehicle

identification and tracking can be addressed by decompos-

ing the problem into three sub-problems: (SP.1) detection

and tracking of vehicles within a single camera known as

the Multi-Target Single-Camera (MTSC) tracking or single-

cam tracking in short, (SP.2) re-identification of targets

across multiple cameras known as ReID, and (SP.3) iden-

tification and tracking of target across a network of cameras

known as Multi-Target Multi-Camera (MTMC) tracking or

multi-cam tracking in short.

It follows that (SP.1) single-cam tracking is provided as

a contest baseline, and (SP.2) is addressed in Track 2 Chal-

lenge as a standalone contest, which also has been studied

extensively (see § 2). Thus (SP.3) multi-cam tracking is the

core topic of this challenge. Since the vehicle shape and ap-

pearance varieties in different camera views is often greater

than the similarity between different vehicles [7], the key

to success is then the spatial-temporal fusion of single-cam

tracking and image-based ReID features that can reliably

identify and associate individual vehicles across the city-

wide camera network. To this end, we develop a novel

multi-camera fusion framework for multi-cam tracking

(see Fig.1) with two advantages: (i) Robust inference of

multi-cam tracking by optimizing image ReID features and

trajectory continuity based on single-cam tracking results.

(ii) Direct integration of site calibration and geographical

information across sites, such that vehicle moving direc-

tions and travel duration across views are leveraged to rule

out irrelevant vehicle ReID pairs (§ 3).

T2 Challenge: City-Scale Vehicle Re-identification.

Target ReID has been studied extensively, especially for

person ReID from camera networks. The challenge of ve-

hicle ReID [39, 21, 24] lies in the large intra-class variabili-

ties, that a vehicle viewed from different cameras can result

in greater dissimilarities than different vehicles viewed from

a single camera. Existing ReID benchmarks such as Vehi-

cleID [21], and PKU-VD [48] tackle only ReID from the

front and back views of the vehicles, thus not suitable here

for ReID from significantly different viewpoints. Also, lo-

cal features extracted via splitting vehicle images does not

work well either. To this end, we propose a Pyramid Granu-

larity Attentive Model (PGAM) based on the recent Region-

Aware deep Model (RAM) [26], such that both coarse and

fine-grained features can be effectively extracted, and fine-

grained discriminability can be retained by adopting a num-

ber of improved model training approaches (random eras-

ing augmentation, BNNeck, center loss, see § 4).

T3 Challenge: Traffic Anomaly Detection. Atypical

traffic incidences can cause destructive effects in traffic mo-

bility and safety. On-the-spot automatic traffic anomaly de-

tection can benefit the Response Arrival Time for a great

deal, thus can possibly save miles of traffic jam after an ac-

cident. While traffic network anomaly can include a large

number of categories (e.g. lane violations, wrong-direction

driving, illegal U-turns), naive spatial-temporal search of

individual events is impractical. Furthermore, real-world

traffic videos usually come in low resolution, in which large

weather/lighting variabilities (snow, night-light, camera vi-

brations) and video transmission artifacts can further de-

grade the quality. The AIC19 challenge focuses on a sim-

plified subset of anomalies related to stalled vehicles. Our

approach thus starts with detecting stalled vehicles after a

foreground/background filtering step, followed by an im-

proved deep Feature Pyramid Network (FPN) [18] that can

identify small vehicles within only ∼10 pixels. We then
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back-track the identified stalled vehicle in the video to ac-

curately localize the event occurrence time (§ 5).

We note that we aim to design our method for general,

unsupervised detection of traffic anomalies that can be ap-

plied or extended to other traffic videos/scenarios. Since the

AIC19 T3 challenge is evaluated and ranked based on only

the 100 test videos (which is not a large set at all), and al-

though manual labeling of training/test dataset is a viable

way to improve performance in the contest, we did not take

such approach by any means.

Contribution of this paper is three-fold. (1) We devel-

oped a novel multi-cam tracking fusion method that ef-

fectively combines state-of-the-art single-cam tracking and

ReID methods while leveraging geographical and site cal-

ibration knowledge in a single optimization framework.

(2) We proposed a Pyramid Granularity Attentive Model

(PGAM) for vehicle ReID with a pyramid design together

with a number of training improvements that can improve

global and fine-grained discriminability for ReID. (3) We

improved the 2nd-best traffic anomaly detection method

in AIC18 [43] with enhancements that can detect much

smaller vehicles with refined event time localization. This

method is ranked top-6 in the AIC19 leaderboard.

2. Background

Vehicle Detection. Convolution Neural Network (CNN)

based methods have gained great success in object detec-

tion, in which the approaches can be organized into two cat-

egorizes: single-shot and two-stage proposal-based meth-

ods. Single-stage methods (e.g. SSD [22], YOLOv3 [33])

perform feature extraction and position regression in a sin-

gle pass. In the contrast, proposal-based methods (e.g.,

Faster-RCNN [34], FPN [18], R-FCN [3], RetinaNet [19])

can achieve more accurate results by optimizing regressions

on each individual region proposal. Major datasets include

BDD100K [49], UA-DETRAC [44], and COCO [20].

Vehicle Tracking. Visual Object Tracking (VOT) has

been studied extensively, where method can be organized

in two categories: single object trackers (SOT) vs. multiple

object trackers (MOT). SOT methods track a single object

that are manually specified in the beginning of video, thus

do not rely on an object detection step. Siamese network

[40] is widely used to track objects via similarity compar-

isons [17, 10, 54]. MOT [4, 14, 5, 30, 29] methods mostly

follow the tracking-by-detection paradigm, to associate and

link per-frame detections or tracklets into consistent longer

tracks, where occlusion recovery and track identity mainte-

nance is the key. Methods include Correlation Filter based

(KCF [14], SRDCF [5], ECO [4]) and CNN based (MDNet

[30], TCNN [29]) approaches.

Multi-Cam Tracking is a practical requirement for

city-scale vehicle tracking with MOT challenges involv-

ing spatial-temporal inference across camera views [45].

Ensemble fusion is a common approach to track vehicles

across camera views, e.g. in [39], tracklet associations, ve-

hicle appearance, and even license plate recognition are in-

tegrated into an unified probabilistic inference framework.

Multi-Cam Vehicle ReID. Deep neural network based

target re-identification methods has drawn significant atten-

tions in recent years. In particular, person ReID from mul-

tiple camera views have been studied extensively [36, 6,

42, 41]. Since vehicles of the same make commonly share

many similar features, it is hard to distinguish each instance

based on their global appearances. The Region-Aware deep

Model (RAM) [26] focuses on learning local regions such

as the distinctive decorations or windshield stickers that are

unique, using a multiple branches network.

To deal with view variations, the Viewpoint-aware At-

tentive Multi-view Inference (VAMI) [53] transforms the

input vehicle feature from a specific camera view into

global view-invariant one, which achieves state-of-the-art

performance on VeRi [23, 25] and VehicleID datasets [21].

Traffic Anomaly Detection from street videos is a rel-

atively new topic in AI smart city. The AIC18 contest [32]

have drawn growing attentions on applying video analytics

to traffic anomaly detection [2, 8, 9, 28, 43, 47]. Traffic

videos in the real-world usually come with relatively lower

image quality (when compared with standard datasets) and

there exists no large-scale dataset. Thus a naive combina-

tion of DNN vehicle detector/tracker can perform poorly,

while standard vision algorithms such as background mod-

eling and optical flow can work in a limited setup but more

effectively. Nonetheless, traffic anomaly detection remains

an open research question and requires multi-discipline de-

velopment that involves transportation research, AI, and

autonomous-vs-human driving scenarios in mix.

3. (T1) City-Scale Multi-Cam Vehicle Tracking

We describe AIC19 contest setup, explain the challenges

to solve, and motivate our approach. The AIC19 contest is

based on the CityFlow dataset [38], which consists of 195

minutes of HD videos collected over 40 cameras across 10

intersections in a mid-size US city. The videos cover a vari-

ety of scenes (including highway and intersections), diverse

traffic conditions, and various viewing angles (zoomed-in

v.s. fisheye wide FOVs), see Fig.1. Successful concurrent

tracking of multiple vehicles in a camera network requires

multiple components to work cooperatively: (1) vehicle de-

tector, (2) target tracker in each camera review, (3) intra-

camera track ReID or linker, in which site calibration or

geometry can be leveraged to reduce errors. The AIC19

contest provides vehicle detection results from state-of-the-

art networks and single-camera tracking baselines, as well

as camera calibrations in the form of homography matrices.

Our multi-cam tracking approach thus focuses on effective

spatial-temporal fusion of single-cam tracking results, by
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globally optimizing the tracklet ReID for association, con-

sidering both the image features and geographical knowl-

edge (tracklet continuity, speed, travel direction and dura-

tion) of vehicles in the view.

The proposed MTMC tracking consists of the follow-

ing steps: (i) multi-cam fusion via homography projection

(§ 3.1), (ii) single-camera detection and tracking (§ 3.2), and

(iii) multi-camera trajectory fusion (§ 3.3).

3.1. Multicam fusion via homography projection

AIC19 Track 1 Challenge provides multi-view homog-

raphy calibrations, which is based on an important assump-

tion that camera projective geometry of a planar 3D world

is equivalent to a planar homography [11, Ch.8.1.1]. The

provided homography matrix H3×3 maps a ground coordi-

nate in longitude/latitude (λ, φ) to an image pixel (x, y). 2

The inverse H−1 maps the other way. Such groundplane

projection assumption can effectively enable manual cali-

brations for up to 40+ cameras. However it also brings addi-

tional complication — that any non-groundplane objects or

regions (trees, buildings, sky) cannot be projected directly.

They will either cause large distortions or completely inval-

idate the mapping (i.e. project to infinity).

One naive solution is to manually define a valid ground-

plane ROI for each camera view. However this can still

results in largely stretched projected views, as pixels near

the horizon map to large physical distances. To this end,

we propose an automatic algorithm to determine the set of

“well-conditioned” pixels by projecting each image pixel

and its 3× 3 neighbors to the physical groundplane unit (in

meters) and check if any ill-conditioned value occurs. If so,

the projection is unreliable and those pixels are masked out.

This method can be easily combined with manual ROI se-

lection to yield a high-quality, road-only fusion view of the

AIC19 sites. Fig.2 shows the visualization of such automat-

ically selected homography ROI in red polygons and video

fusion results.

3.2. Singlecam detection and tracking

We perform vehicle detection and MTSC tracking in

each of the 36 training videos and 23 test videos, following

the tracking-by-detection paradigm. From the 3 provided

vehicle detection baselines (Mask-RCNN [12], SSD512

[22], YOLOv3 [33]), we found the COCO [20] pre-trained

Mask-RCNN performs the best, with high recall and in-

evitably more false detections. This is preferred, as a good

tracker can filter out noisy detections during tracklet associ-

ation while keeping potentially correct detections. We try to

avoid mis-detection of small or fast-passing vehicles in this

stage. Out of the 3 provided baseline trackers (DeepSort

2H must be in double precision otherwise the lost of precision can

causes several meters of error when projecting (λ, φ) to the site-specific

groundplane in unit of meters.

Figure 2. Multi-cam homography projection fusion for site S1 (c01

to c04). Automatically selected homography ROI in red in each

view are fused into an one-world view of the site.

[46], MOANA [37], TC [39]), we found TC performs the

best with less broken tracklets than DeepSort, while Deep-

Sort is more sensitive in capturing fast-passing vehicles.

In all camera views, trajectories outside the homography

projection ROI masks from § 3.1 are filtered out. This re-

moves noisy far-away trajectories, and ensures only reliably

tracked vehicles are kept for multi-view fusion.

3.3. Multicam trajectory fusion

All refined single-cam trajectories are now projected to

a common groundplane coordinate system for fusion. For

cameras with overlapping views, the fusion maximizes tra-

jectory overlaps and continuity as well as image feature

similarity. For non-overlapping cameras, we leverage im-

age ReID features as well as geographic information (travel

direction and duration), which can be combined to rule out

incorrect matches.

We formulate the city-wide multi-cam vehicle tracking

as a track association problem by fusing the refined single-

cam tracking trajectories in § 3.2. Each track is consid-

ered a distinct vehicle in the beginning, which are itera-

tively associated with matching tracks in a best-first fashion.

This process repeats until no further associations should be

performed, and each resulting track are assigned with an

unique global identity.

Our multi-cam fusion is performed by an iterative greedy

association of a pair of vehicle tracks (Ti, Tj) in cameras

(Ci, Cj) respectively, by minimizing a loss function L char-
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acterizing the dissimilarity between (Ti, Tj). Specifically,

L(Ti, Tj) consists of 4 terms: image feature loss Lf , tra-

jectory continuity loss Lc, driving direction loss Ld, and

travel time loss Lt in weighted combinations:

L(Ti, Tj) = ωfLf + ωcLc + ωdLd + ωtLt, (1)

where ωf , ωc, ωd, ωt are weighting factors controlling the

sensitivity of loss terms, which are set empirically to 1.5, 1
, 1 and 1 respectively.

Image feature loss Lf . For each single-cam track Ti, we

take N = 3 samples from the starting, middle, and ending

images of the track, and use ResNet152 [13] pre-trained on

the Stanford cars dataset [16] to extract a 2048-dimensional

feature vector fi from each image. Cosine distance dcos =
cos(·, ·) + 1 is used to calculate the loss between tracks:

Lf (Ti, Tj) =
1

N

N
∑

n=1

dcos(f
n
i , f

n
j ), (2)

where fn
i and fn

j are the nth image feature of tracklets Ti

and Tj , respectively.

Trajectory continuity loss Lc. For each Ti in camera

Ci, we project the bottom-center of each bounding box to

the groundplane using the homography Hi. The obtained

trajectories in the real-world longitude/latitude coordinates

are used to estimate the continuity and overlap between

tracks. Note that vehicle trajectories close to the viewing

camera provides a strong cue for tracklet association (as ve-

hicles cannot overlap in 3D space). Thus we consider tra-

jectories that are within 0.1 mile of each camera, and keep

M = 100 sample points for each trajectory to calculate the

L1 distance between a pair of trajectories. For trajectory of

sample points 6= M , we either interpolate or sub-sample to

match the M points. The loss is calculated as:

Lc(Ti, Tj) = exp

(

c ·
1

M

M
∑

m=1

dL1(p
m
i , pmj )

)

− 1 (3)

where pmi and pmj denote the mth trajectory point of the

tracks Ti and Tj in real-world coordinates, respectively; c =
0.00001 scales down the L1 sum to balance with other loss

terms; the −1 ensures the loss takes minimum value of 0.

Driving direction loss Ld. In a dense city-wide cam-

era network across intersections, it is reasonable to assume

that vehicles travelling between camera views are mostly

straight (with fixed moving directions). This way, the ve-

hicle driving directions can provide a strong cue to rule out

a majority of incorrect matches in tracker fusion. For each

track Ti, we compute the vehicle driving direction vector θi
from its start and end points. The loss Ld between a pair

of vehicle tracks (Ti, Tj) is estimated as the cosine distance

between their driving directions:

Ld(Ti, Tj) = dcos(θi, θj). (4)

Travel time loss Lt. Since all AIC19 cameras are cali-

brated with known recording timestamps in UTC and video

FPS, vehicle travel time between cameras can provide use-

ful hints for ReID and track association. On one hand, the

timestamp for each tracked vehicle in any video frame is

known, so we can compute the actual travel duration taij
between any pair of vehicles (Ti, Tj) shown up in cameras

(Ci, Cj), respectively. On the other hand, the locations of

the cameras (Ci, Cj) are known, so we can calculate the

distance dij between (Ci, Cj). Together with the vehicle

velocity vi estimated from the tracking, we can compute

the predicted travel duration t
p
ij =

dij

vi
, if Ti and Tj belongs

to the same vehicle travelling from Ci to Cj assuming con-

stant velocity. The travel time loss captures the difference

between the actual and predicted travel duration of a trajec-

tory pair:

Lt(Ti, Tj) = exp
(
∣

∣t
p
ij − taij

∣

∣

)

− 1. (5)

The minimization of the loss L together with iterative

greedy selection lead to an effective multi-cam tracking fu-

sion that considers image ReID features, trajectory continu-

ity, and geographical information (vehicle travel directions

and duration across views) in a single framework.

4. (T2) City-Scale Multi-Cam Vehicle ReId

The vehicle ReID contest in AIC19 is to match vehicles

between camera views, using a query vehicle image that

is the direct result of a detection/tracking algorithm gener-

ated in the same city-scale dataset. The given vehicle im-

age patch obtained from visual tracking is not always ac-

curately cropped. So the contest reflects the difficulty of

vehicle ReID in the real world. Given a query vehicle im-

age and a gallery images set, the goal is to rank matching

candidates in a gallery set according to their similarity with

the query. We introduce our Pyramid Granularity Attentive

Model (PGAM) for the vehicle ReID problem in this setup.

§ 4.1 describes model design, and § 4.2 describes training

improvements.

4.1. Pyramid Granularity Attentive Model

We design our ReID method by adopting two recent

deep ReID networks — the Multiple Granularity Model

(MGN) [41] and Region-Aware deep Model (RAM) [26].

MGN is designed for person ReID, where the model con-

tains a multi-branch, feature map splitting design. 3 RAM

is designed similarly that several paths are used to deal

with global and local features. Our main finding is that

such multi-branch design only works for well-cropped ve-

hicles for ReID. It does not perform well for our vehi-

cle ReID task, in that the AIC19 ReID vehicle images are

3 The MGN network uses 3 splitting branches (Global, Part-2 and Part-

3), where the Part-2 branch splits feature maps into the top and down parts,

and the Part-3 branch split feature maps into top, middle and bottom parts.
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Figure 3. PGAM ReID network architecture. Input image is

resized into 256×256. The three path shares the same number of

channels (1024) for vehicle color and identity prediction (see text).

not accurately cropped (with extra background and other

other objects in the view), so a direct image partitioning

for branching is harmful. Our solution is to introduce a

multi-scale pyramid design, such that both coarse-scale and

fine-grained features can be better extracted. Our pyramid

model extracts both global and local features in multiple

scales, thus allows attentive granularity, which leads to bet-

ter performance in comparison to the direct separation of

global/local features in MGN and RAM. § 6 will provide

experimental results on this.

Fig.3 shows the proposed PGAM network architecture.

Given an input vehicle image, we use the last three residual

blocks of ResNet [13] to obtain image features, each with

1024 channels. This is similar to [50], in which three layers

of features are extracted and concatenated in the last resid-

ual block to compute loss. The difference of our approach

is that we extract features from three residual blocks to en-

rich multi-granularity information. These features are fed

into respective average pooling layers to compute respec-

tive classification loss. The resulting 3 branches of features

f1, f2, f3 are normalized using Batch Normalization Neck

(BNNeck) [27], which will be described in details in § 4.2.

A fully connected layer takes the BNNeck filtered features

and output vehicle color and identity classification results

using cross entropy loss.

4.2. Training Improvements

We adopt the following training strategies (tricks) [27] to

improve the performance of PGAM.

Random Erasing Augmentation is introduced in [52]

to address object occlusions that frequently occur in ReID.

By randomly cover an image region using a mask (with

black, gray or random noise pixels) during training, the

learned ReID model will perform more robustly against oc-

clusions (with an effect similar to dropout).

BNNeck: Fine-grained features is important to distin-

guish two distinct vehicles that are visually very similar. To

achieve effective vehicle ReID, one should distinguish the

feature and usage for image triplet loss and identity loss.

The BNNeck design [27, 15] can address this by adding one

batch normalization (BN) layer before the classifier, such

that the features before BN is used to compute triplet loss,

and the features after BN is used for identity classification.

Center Loss Lcen is used in [27] to focus on the learning

of class centers, while focus less on the distance between

feature points and class centers. Adding center loss can

tighten the clustering of learned class features. This formu-

lation effectively overcome the drawback of triplet loss 4 by

enlarging intra-class variations. Thus, minimizing the cen-

ter loss increases intra-class compactness, which improves

fine-grained ReID performance.

After adopting the above strategies, our ReID objective

function Lreid is formulated as:

Lreid = α1(Lid + Lcolor) + α2Lcen + α3Ltri, (6)

where Lid and Lcolor denotes the summation of the three

branches of ID and color classification losses as in Fig.3.

Ltri denotes the triplet loss computed from f1, f2 and f3.

Weights α1 = 2, α2 = 0.0005 and α3 = 1 control the

relative importance of loss terms as in [41, 27].

Vehicle ReID datasets. The provided AIC19 vehicle

ReID training set contains only 333 distinct vehicles. So we

first train our ReID model using the VeRi dataset [23, 25],

and then fine-tune on the AIC19 training set. 5

5. (T3) Traffic Anomaly Detection

The AIC19 traffic anomaly detection contest provides

100 training videos and 100 test video, in which about 1

4

to 1

3
videos contain traffic abnormal incidences. We found

that all anomalies (including emergency stops or crashes)

are related to stalled vehicles on the road side. Note that

regular stops at traffic light and vehicles appear away from

the main road in the scene do not count as anomalies. Thus,

we proposed a simple effective method to detect abnormal

stalled vehicles based on (i) video foreground/background

(FGBG) analysis in § 5.1, and (2) a deep vehicle detection

network in § 5.2. We found it necessary to train a dedicated

vehicle detector in order to detect vehicles in the given low-

quality videos, where the vehicles can be as small as within

10 pixels. This is a difficult task on its own, where standard

deep vehicle detection models will mostly perform poorly.

Despite the simplicity of our rule-based approach, it is

effective in detecting most real-world traffic anomalies in

the test set, while not confusing abnormal events with nor-

mal traffic light stops and vehicles away from the main road.

Furthermore, our method can be easily customized to han-

dle various practical issues, including video compression

artifacts and camera view changes.

4 The triplet loss considers the difference between the distances of pos-

itive and negative pairs, and ignores their absolute values.
5 The VeRi dataset contains 576 training vehicles in 37, 778 images

and 200 test vehicles in 11, 579 images. The VeRi ReID evaluation is

performed using 1, 678 query images to match in the test set.
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Figure 4. Video FGBG Analysis. (a) background image after

FGBG analysis, where moving vehicles are excluded. (b) an ab-

normal vehicle in an emergency stop. (c) the road ROI mask ob-

tained from FGBG analysis highlighting traffic lanes.

Note that not all traffic anomalies involve stalled ve-

hicles. Stalled vehicles is not necessarily the cause of

anomaly, but stalled vehicles certainly correlate strongly

with the result of an anomaly (except for a hit-and-run). 6

To this end, we develop a method to back-track the detected

stalled vehicle in time to determine accurate starting time of

the incidence in § 5.3.

5.1. Video FGBG Analysis

Our abnormal stalled vehicle detection pipeline starts

with a simple video foreground/background (FGBG) anal-

ysis [43] that can effectively rule out most regular moving

vehicles. We can then focus on the detection of any remain-

ing stalled vehicles, and check if these vehicles involve in

any anomaly (e.g. emergency stop or crash), or they are just

stop at a traffic light. Fig.4 overviews this pipeline. The use

of FGBG analysis is based on an assumption that the camera

view is mostly fixed, while slight camera vibrations or PTZ

zoom changes are possible (which needs extra handling).

We use the MOG2 [55, 56] FGBG modeling to extract the

background image with update rate r = 1

w
and window size

w = 30 frames (∼ 1 second, as video is 30 fps).

We use the above FGBG analysis to produce a road ROI

mask that can aid abnormal event verification. The basic

idea is that abnormal stalled vehicles mostly park on the

road shoulders immediately next to the traffic lanes. So

searching for stalled vehicles on the shoulder is an effec-

tive way to identify abnormal cases. We accumulate the

foreground blobs from the first nf = 60 frames of each

video to calculate the road ROI mask, which represents pix-

els with large traffic flows. Fig.4c shows an example. We

can safely ignore detected stalled vehicles that are too far

away from this road ROI, and thus remove plenty of false

6For example, the 0 : 49 crash in test video 1 suddenly occurred with-

out stopping; but promptly after the incidence, the subject and other drivers

stop in emergency to check things up.

Figure 5. Vehicle detection results on the FGBG background im-

age. Red box shows abnormal stalled vehicles.

positive vehicle detections, including parked vehicles away

from the main road.

Finally, several AIC19 traffic anomaly videos contain

transmission/compression artifacts with frame drops or

frozen frames. 7 We avoid events triggering from these

frozen frames; otherwise the FGBG analysis with small

window size and sensitive thresholds will create lots of false

positives. Specifically, we adopt the Scene Detector[1] to

estimate frame content change between consecutive frames,

and then identify the frozen frames. We also apply a similar

check to determine if there exists any camera view changes

caused by the pan, tile, zoom movements from a PTZ cam-

era. We ignore any triggered events within these scene

changing frames, as they mostly represent false positives.

5.2. Vehicle Detection

We perform vehicle detection directly on the background

image from the FGBG analysis. Fig.5 shows a few detection

examples. To ensure small vehicles can be reliably detected

(otherwise a potentially abnormal event will be missed), we

adopt state-of-the-art object detection networks including

R-FCN [3], FPN [18] and Focal Loss [19] to build our ve-

hicle detection model. Since there exists no vehicle detec-

tion datasets (that are made purposely) in low image quality

that matches our case in the AIC19 contest, we start with

pre-trained vehicle detectors using standard datasets such

as UA-DETRAC [44] and COCO [20]. We exploit the FPN

structure to take advantage of multi-scale features. We in-

corporate the Focal Loss design to ease the problem of im-

balance classes.

The detected vehicles represent candidates for abnormal

stalled vehicles, which are checked using the road mask

ROI in § 5.1 to determine if the vehicle is parked on the

7 Test videos 14,44, 50, 59, 61, 69, 70, 86, 93, 94 contain frozen frames.
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shoulder of the main road. We also use the binary vehi-

cle classification model as in [43] to double-check if the

detected object in the bounding box is indeed a vehicle.

Our empirical experience shows that such redundant cas-

cade check using a second classifier can improve accuracy.

Finally, to deal with regular stopped vehicles at traffic

lights, we determine the duration and place of the stops.

This strategy is based on a reasonable assumption that traf-

fic light area should gather frequent stop-and-leave vehicles.

We then add an additional rule to suppress the triggering of

regular traffic light stops as abnormal.

5.3. Single Object Tracking for Event Backtracking

Recall that stalled vehicle is the result of an anomaly and

not necessarily the cause of it. After we detect an incidence

with known location, the next is to accurately determine the

incidence occurrence time. Our approach is to backtrack

the vehicle in time in the original video, to determine the

incidence starting time. Consider there exists frequent oc-

clusions among the vehicles on the road, and there can be

significant appearance changes of the vehicle during track-

ing in the real-world traffic videos, we utilize the state-of-

the-art single object tracker, DaSiamRPN [54] to back-track

the targeted vehicles in the original video. The incidence

starting time is estimated as the time when the DaSiamRPN

tracker loses track of the target during backtracking.

6. Challenge Results and Discussions

(T1) City-Scale Vehicle Tracking contest data contains

195.03 minutes of HD videos (over 960p, 10 fps in most

videos) collected from 5 sites in a mid-size US city. Three

sites of data are used for training, and the remaining 2 sites

are used for testing. The dataset contains 229, 680 bounding

boxes of 666 distinct vehicles.

The multi-cam tracking performance of each participant

team is evaluated using the F1 score of vehicle identity

[35], which measures the ratio of correctly identified de-

tections over the average number of ground-truth and com-

puted detections:

F1id =
2 TPid

2 TPid + FPid + FNid

, (7)

where TPid denotes identity true positive, FPid denotes

identity false positive, FNid denotes identity false negative.

We obtain S1 = F1id score of 0.1634 from the AIC19 eval-

uation, which ranks 17 out of 22 participant teams.

(T2) City-Scale Vehicle Re-identification contest pro-

vides 56, 277 vehicle images in the training set and 36, 935
in the test set. The training and test sets contain mutually

exclusive vehicle identities, in a total of 333 vehicles. Addi-

tional 1, 052 images are used as query set in the evaluation.

Each evaluation vehicle is captured by 2 to 18 cameras in

Table 1. Vehicle ReID ablation study results.

MGN [41] PGAM-noCen PGAM

mAP 20% 29.09% 29.65%

the CityFlow dataset [38] with different viewpoints, illumi-

nations, resolutions and occlusions. In addition, the labeling

of 10 vehicle color classes and 9 vehicle types are provided

for each vehicle in ReID evaluation, see [38, Fig.3].

The vehicle ReID performance is evaluated using mean

Average Precision (mAP) [51] from the top-K matches, cal-

culated for vehicle images in the query set, K = 100. We

obtain S2 = mAP score of 0.2965, which ranks 50 out of

84 participant teams.

Table 1 summarizes additional ablation study of vehicle

ReID experiments performed on the AIC19 evaluation sys-

tem. We compare the proposed PGAM with a version of

PGAM without center loss, and MGN [41] as a baseline.

(T3) Traffic Anomaly Detection contest data contains

100 training videos and 100 test videos in 800 × 410, each

about 15 min long in 30 fps. These videos represent real-

world traffic data covering large variety of traffic conditions,

weather conditions (day, nights, snow, rainy, sunny), and

traffic anomaly events (emergency stops, crashes).

Traffic anomaly detection is evaluated using the F1

score multiplied by the event detection time error in

RMSE (unit in seconds):

S3 = F1 × (1−NRMSE), (8)

where the NRMSE is the RMSE normalized with mini-

mum 0 and maximum 300. We receive F1 = 0.7027 and

RMSE = 7.4679 from half of the test set. We obtain

S3 = 0.6997 from the AIC19 evaluation, which ranks 6

out of 23 participant teams.

7. Conclusion

We presented three novel methods in participation to the

three Contest Tracks of the AI City Challenge 2019. In

the Track 1 contest, we developed a new multi-camera fu-

sion method that can perform multi-target tracking across

a city-scale of camera network. In the Track 2 contest, we

propose a Pyramid Granularity Attentive Model for vehicle

ReID with a multi-scale pyramid multi-branch design to-

gether with training improvements. In the Track 3 contest,

we improve the 2nd-best method from AIC18 with refined

recognizer that can detect small abnormal vehicles with ac-

curate event time localization. All three proposed methods

represent efforts in applying frontier computer vision meth-

ods to address real-world traffic big data analytics. Future

work includes improving the performance and robustness of

proposed methods, as well as performing real-time, online

evaluations on real-world traffic monitoring test sites.
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