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Abstract

Vehicle re-identification and multi-camera multi-object

vehicle tracking are important components in the field of

intelligent traffic, which is attracting more and more atten-

tion. In the NVIDIA AI City Challenge, we propose our so-

lutions to solve these issues. In Track1 task, clustering loss

and trajectory consistent loss are introduced into the vehicle

re-identification training framework to train more suitable

trajectory-based features for the clustering task. Besides,

spatial-temporal cue is fully excavated to make up the de-

ficiency of appearance feature and constrained hierarchi-

cal clustering is introduced into the pipeline to get the final

cluster results. In Track2 task, we propose an effective vehi-

cle training framework and trajectory-based weighted rank-

ing method, which greatly improve the performance. Fur-

thermore, an efficient way to mining the additional data to

train more robust features is proposed to enlarge the train-

ing data. Finally, our algorithm achieves the state-of-the-

art performance in the competition.

1. Introduction

Large scale traffic video analysis plays an important role

in AI city, which is attracting more and more attention

nowadays. Multi-camera multi-target vehicle tracking al-

lows us to get the trajectory of the vehicles in the city. Much

attention has been paid in recent years to the problem in ve-

hicle re-identification(ReID) [16, 22, 7, 26]. Given a query,

these works aim to make the query closer to the positive

set than to the negative set so as to get a good ranking re-

sult. However, in MTMC task, the problem becomes how to

cluster the trajectories across the cameras. In our work, we

design a clustering loss to make the visual vehicle feature

more suitable for the clustering task.

In the multi-camera multi-target pedestrian tracking,

some works [14, 25, 21] has been done, which focus on how

to find robust feature and effective cluster methods, without

∗contributed equally

much consideration of the spatial-temportal cue. The AI

city 2019 Track1 Challenge [19] provides the calibration of

each camera for the participants, which can turn the pixel in

the 2D image into latitude and longitude in the real world.

In this work, we utilize this information to get the space-

time similarity and to rerank the appearance similarity ma-

trix, which further improved the accuracy of our algorithm.

In vehicle ReID, image-based similarity is used to get

the ranking order of each query. However, in MTMC task, it

becomes a trajectory-based matching problem. Many works

only average all features within a single trajectory. Due to

different postures of the vehicle in a trajectory, simply av-

eraging the features may not be the best way. In our work,

batch hard triplet loss proposed by [4] is introduced to make

the query closer to the positive set in the the same camera

than to positive set in different cameras. In this way, the

features within a trajectory might have more consistency.

For Vehicle-ReID, image-to-image retrieval method can-

not determine whether the images are in the same ID by

their common areas due to the occlusion and blurring of cor-

responding images. However, when utilizing the retrieval

method of image-to-track matching algorithm, there will be

more chance to acquire abundant information from multi-

ple perspectives with the track images, and thus help obtain

more robust features for Vehicle-ReID. Based on the ideas

above, we design an algorithm to acquire the quality of the

track images without supervision by the outputs of the net-

work, and assign appropriate weights to the features of the

track with the results of the quality judgment.

In summary, we make the following contributions:

• The clustering loss and trajectory consistency loss are

proposed to get powerful appearance vehicle features

for MTMC task and trajectory-based clustering, which

greatly improves the performance.

• The camera calibration information is fully used to

turn the pixels position in the 2D images into latitude

and longitude in the real world. After that, the spatial-

temporal similarity can be generated as a complement

to the appearance features. Besides, constrained hi-
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Figure 1. The overall design of our algorithm, which consists of MTSC module, similarity matrix calculating module and clustering

module.

erarchical clustering algorithm is introduced into the

algorithm.

• We propose a ranking method which fully utilizes

the trajectory information to generate weighted feature

for Vehicle ReID. An effective way of mining more

adaptive data from the additional data is proposed to

achieve a great performance.

• The methods are evaluated on the AI city 2019 Track1

and Track2 challenge and achieves the state-of-the-art

performance.

2. Related Work

We summarize works on different aspects as follows.

Vehicle ReID. MTMC task relys on vehicle ReID to

extract appearance feature of the vehicle. Liu .et al [8]

proposes a well-annotated vehicle re-identification dataset,

which contains 776 identifications with rich attitude. Shen.

et al [16] proposes a two-stage framework for vehicle

re-identification, which first proposes a series of candi-

date visual-spatial-temporal paths with the query images as

the starting and ending states, then a Siamese-CNN+Path-

LSTM network is utilized to make full use of spatial-

temporal regularization from the candidate path. Wang. et

al [22] extracts local region features of different orientations

based on 20 key point locations to get the local details of the

vehicle. Zapletal. et al [24] aligns images with 3D rectan-

gular and use HOG as the feature extractor. Zhou. et al [26]

proposes a viewpoint-aware attentive multi-view Inference

model to solve the multi-view vehicle ReID problem.

MTSC. Tracking-by-detection becomes more and more

popular for multiple objects tracking. So as to find the tra-

jectory of each target from detection results in all frames,

data association is an essential task, which is discussed

in [12, 23, 18]. The linear programming and graph-based

methods are used to conduct in a discrete space. Many op-

timization algorithms such as the network flow [15] and the

subgraph multi-cut [5, 17] have been proposed.

MTMC. With the advancement of multiple objects

tracking techniques and the vehicle ReID techniques,

MTMC can be better solved. Ristani. et al [13] proposes

a large-scale, well-annotated multi-camera tracking bench-

mark for pedestrians, which makes great progress in this

field. Ristani et al [14] proposes an adaptive weighted

triplet loss for training and a new technique for hard-identity

mining. Zhang. et al [25] utilizes hierarchical cluster-

ing with well-trained person re-identification features in the

DukeMTMC benchmark. Yonatan. et al [21] proposes

a multiple hypothesis tracking algorithm for multi-target

multi-camera tracking with disjoint views. In the NVIDIA

AI City 2018 Challenge [11], Tang. et al [20] proposes a fu-

sion of visual and semantic features for both single-camera

tracking and inter-camera tracking. Feng. et al [2] focused

on vehicle ReID and multiple object tracking to solve the

MTMC task.

3. Proposed Method

3.1. MultiTarget SingleCamera(MTSC) Tracking

3.1.1 Detection

Lin. et al [7] proposes a novel feature pyramid network,

which uses top-down and lateral connections so as to cap-

ture the objects with different scales. We use ResNet50
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[3] as the backbone, which is trained in the training set

of AI City Challenge Track1 and VisDrone2018 DET [27]

dataset, with only the vehicle category. In the inference

phase, the image is resized into 1440×800, so as to capture

more small vehicles in the video. As the bounding boxes

with the areas smaller than 1,000 pixels are not annotated,

we filter them out in the result. Besides, we use the anno-

tated ignored area provided by the competition organizing

committee to further filter out the detection results. The

confidence threshold of the detection is set to 0.7 to reduce

false positive rectangles.

3.1.2 MTSC

Feng. et al [1] proposes a unified Multi-Object Tracking

framework to make full use of long term and short term

cues, which achieves state-of-the-art performance in the

MOT benchmark [6]. Besides, the state-of-the-art single

object tracking(SOT) method of [28] is used for captur-

ing short term cues and a vehicle ReID method is applied

to extracting long term cues. During data association pro-

cess, motion information, location information and visual

information are taken into consideration. Besides, poten-

tial switcher is used to make the association module more

robust.

We use the detection algorithm mentioned above as the

detector with high recall. Only the bounding boxes with

the confidence score higher than 0.7 are taken into multiple

target tracking algorithm. As the vehicles move fast in the

dataset, we enlarge the search region to get more accurate

locations. The MTSC results are shown in Figure 2.

Figure 2. Illustration of the MTSC results. The black area in the

image is the annotated ignored area provided by the competition

organizing committee.

3.2. MultiCamera Vehicle Reidentificaiton Fea
ture

3.2.1 Overall Design

We use the tricks proposed by [10], which achieves state-

of-the-art results in the pedestrian re-identification field, to

train our ReID feature. The training framework is shown in

Figure3. The image is resized to 320 × 320 in the training

and inference phase. We use ResNet50 as the backbone,

with data augumentation such as random padding, horizon-

tal flip and random erasing. For additional dataset, we ex-

periment on VeRi-776[9] as a supplement.

In the inference phase, we generate a global feature with

the dim of 2048 before batch normalization neck(BNNeck)

as the final output of the input image. Similarity between

two features is calculated through cosine similarity .The

overall loss function contains the cluster loss, trajectory

consistency loss and the classification loss, which will be

discussed in detail in the next subsection.

3.2.2 Loss function

Cross Entropy Loss with Smooth Label. As there are

many similar vehicles in the dataset, simply using hard label

will make the training difficult. For each image, we gener-

ate soft label to encourage the model to train smoothly and

less confidently, which can be expressed as:

qi =

{

1− N−1

N
ε, if y = i

ε
N
, otherwise

(1)

where i is the index of the image, y is the identification of

the image, N is the number of the samples in the dataset,

and ε is a small constant, which is set to 0.1 in our work.

Then the cross entropy loss with label smooth can be com-

puted as:

L(ID) =

N
∑

i=1

−qilog(pi) (2)

where pi is the ID prediction logits of class i.
Clustering Loss. ReID ranks distances to a query while

MTMC classifies a pair of trajectories across cameras as

being co-identical or not. Besides, the performance of

them are measured by different metrics: ranking perfor-

mance mAP for ReID, while IDF1 is used for MTMC,

which suggest that appearance features used for the two

problems must be learned with different kinds of loss func-

tions. Specifically, the ReID loss ought to guarantee correct

feature ranking for any given query while the MTMC loss

should ensure that the largest distance between any two co-

identical features is smaller that the smallest distance be-

tween any two non co-identical features, to obtain a mar-

gin between within-identity and between-identity distances.

Therefore, we propose a clustering loss to ensure that every

two samples in the same cluster centroid have smaller dis-

tance than that of any other two samples in different cluster

centroids.

Alexander. et al [4] proposes batch hard triplet loss. Let

Di,j = D(fθ(xi), fθ(xj)), where fθ is the function that
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Figure 3. The overall design of the vehicle ReID algorithm, where P is the number of the ID in the mini batch and K is the number of

images in each ID. The feature before BNNeck is used for cluster loss and trajectory consistent loss while the feature after BNNeck is fed

into ID loss.

map the input xi and xj to the features of 2048 dimensions,

i and j is the index of the samples. In the mini batch, let P
be the number of identifications in the batch, K be the num-

bers of the images of each identification. For each anchor,

make sure that the maximum distance of the positive pairs

is larger than the minimum distance of the negative pairs by

a margin m, which is set to 0.3 in our experiment.

LBH(θ;X) =

P
∑

i=1

K
∑

a=1

[m+ max
p=1,2,...,K

D(fθ(x
i
a), fθ(x

i
p))

− min
j=1,2,...,P,n=1,2,...,K,j 6=i

D(fθ(x
i
a), fθ(x

j
n))]+

(3)

where the data point xi
j corresponds to the j-th image of the

i-th identification in the batch, [x]+ equals to max(0, x).
In our work, we let the anchor be the cluster centroid,

whose feature is the average features in the cluster. It can

be expressed as:

LC(θ;X) =

P
∑

i=1

[m+ max
p=1,2,...,K

D(fθ(x
i
ai
), fθ(x

i
p))

− min
j=1,2,...,P,n=1,2,...,K,j 6=i

D(fθ(x
i
ai
), fθ(x

j
an
))]+

(4)

where ai is the cluster centroid of the identification with

index i and an is the cluster centroid of the identification

with index n.

Trajectory Consistent Loss. Through single camera

tracking, we can get the trajectory under a single camera.

Multi-camera tracking is actually a problem of clustering

trajectories across different cameras. Our algorithm extracts

the features of each image in the trajectory. Then we aver-

age the features of the trajectory to get robust visual discrip-

tion. However, due to the variety of postures of the vehi-

cle in some trajectory, feature fusion sometimes reduce the

accuracy. Therefore, in the training phase, we utilize the

batch hard triplet loss within the trajectory and identifica-

tion. Therefore, the features in the trajectory are consistent,

so that there is better fusion effect.

Let K equals to C × T , where C is the number of the

cameras in each identification and T is the number of im-

ages in the same trajectory. Then the trajectory consistent

loss is:

LTC(θ;X) =

C
∑

i=1

K
∑

a=1

[m+ max
p=1,2,...,t

D(fθ(x
i
a), fθ(x

i
p))

− min
j=1,2,...,C,n=1,2,...,T,j 6=i

D(fθ(x
i
a), fθ(x

j
n))]+

(5)

The final loss in our experiment is:

L = λ1LID + λ2LC + λ3LTC (6)

where λ1 and λ2 is set to 1 and λ3 is set to 0.2 in our exper-

iment.

The loss use in this work is shown in Figure 1.

3.3. Reranking with Spatialtemporal Cue

In the inference phase, all trajectories can be represented

by a feature of 2048 dimensions. The appearance similarity
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Figure 4. Illustration of different kinds of losses. Different shapes (triangle, circle, and square) represent different classes. The samples

with the same color and the same shape are in the same trajectory.

of trajectory i and j can be computed using cosine similar-

ity:

cos(i, j) =
fi · fj

‖fi‖ ‖fj‖
(7)

where fi is the feature of i and fj is the feature of j.

AI City 2019 Track1 Challenge provides camera cali-

bration information, which can be used to map the coordi-

nates (x, y) in the 2D image to the latitude and longitude

(lat, lng) by the following equation in the real-world. Let

L = (x, y, 1), representing the position in the image. We

select center point of the bottom edge of the vehicle as the

(x, y) to calculate the distance.

P = H−1 · L (8)

P is a 1× 3 vector. Then (lat, lng) can be computed as:

{

lat = P [0]/P [2]
lng = P [1]/P [2]

(9)

After that, the distance in the real world between the two

points can be calculated. We use spatial-temporal cue to cal-

culate the similarity of the trajectories. Because there exists

measurement error in the calibration, we use it cautiously.

If there are time intersections between the two trajectories,

the average distance d between them in the same time can

be calculated. Then the average distance is mapped to the

trajectory similarity p by the following quadratic function:

pi,j = max(0, 1− (d/200.)2) (10)

where i, j is the index of the two trajectories.

If the two trajectories have no time intersection, we cal-

culate the average speed to pass from one camera to another

camera. Then the average velocity v is mapped to the tra-

jectory similarity p by the following quadratic function:

pi,j = max(0, ((v − 10)/30.)2) (11)

All hyperparameters are calculated in the training set.

The average speed pass from one camera to another cam-

era is about 30m/s and the mean distance of the two same

trajectories in the same time is about 0 meter. Finally, the

similarity matrix S is m×m, where m is the number of the

trajectories. Each element of S is Si,j = pi,j ∗ cos(i, j).

3.4. Solving the Similarity Matrix with Constrained
Hierarchical Clustering

The vehicles with the same identification contain a vari-

ety of angles. At the same time, there are many similar ve-

hicles with different identification, which have large values

in similarity matrix. Therefore, by using density clustering,

such as the DBSCAN clustering, many similar vehicles with

different ID will gather in the same class. Besides, because

the number of the cluster centroid are not provided, it is not

suitable to use k-means clustering.

While constructing the similarity matrix, the camera in-

formation is taken into consideration to rescore the appear-

ance similarity matrix. Single camera tracking can get a

accurate multi-target tracking result under a single camera.

Therefore, if the two tracks are under the same camera, they

are considered to be impossible to be the same car. This
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constraint reduces the complexity of the problem. As clus-

ter loss and trajectory consistency loss are utilized to train

the vehicle ReID model, the appearance feature of the tra-

jectories are discriminable. Therefore, we solve this prob-

lem by hierarchical clustering with constraints. The two tra-

jectories with the largest similarity value in the matrix are

most likely to have the same identification.

• Step1. Initially, treat each sample as a cluster;

• Step2. Calculate the similarity between each cluster;

• Step3. Assign the similarity of the two cluster under

the same camera to 0;

• Step4. Find the two most recent clusters and classify

them into one cluster centroid;

• Step5. Repeat step 2, step 3 and step 4 until the simi-

larity between each two samples is not greater than the

threshold (in this dataset, the threshold is set to 0.65.)

4. Vehicle ReID

4.1. Ranking with weighted features and trajectory
infomation

When utilizing ReID in traffic monitoring, it may require

us to replace the single image with a brief trajectory as there

may not be abundant information in a single image and

some features may also be obscured. While with the tra-

jectory that covers multiple similar images, the features of

the same target can be gathered from different perspectives.

Inspired by the ideas above, different from the traditional

solution that compares the features between the query im-

ages and gallery images, we can replace the features of each

gallery image with the average features of the track that this

gallery image lie in, which can be regarded as an improve-

ment from image-to-image to image-to-track way.

However, there still remains some challenges in image-

to-track ReID. For example, the images in a same trajectory

may be in different quality caused by the target obscured or

blurring. And the images in poor quality cannot represent

the features of the trajectory. To address this problem, the

most direct solution is to judge the quality of the images

with extra models, and assign an appropriate weight to each

image by the results of the quality judgment. While con-

sidering that this solution may call for additional labelling

costs, seeking for an unsupervised approach to tackle this

challenge may be a valuable and popular choice.

Intuitively, considering the query that has the same id as

the trajectory, the higher the quality of the trajectory image

is, the more similar they are. And thus we can select the

images from the query which are the most similar to the

trajectory to get a weighted vector of this trajectory by the

distance matrix between it and the selected query.

Specifically, at first, we calculate the distance matrix

Dist(Q,G), where Q is the image set of query, denoted

as {Q1, Q2, ...Qm} , G is the image set of gallery, denoted

as {G1, G2, ...Gm}. Then we can calculate the sub-matrix

Dist(Q, Ti), where T is the set of trajectory from gallery,

and Ti is the ith trajectory in T . Then we choose the rows of

Dist(Q, Ti) whose min values are lower than 0.2, denoted

as D
′

, to get the most similar images as the trajectory. Then

We calculate the mean value of each column in D
′

to get an

average distance vector Ai of Ti. The weighted vector can

be calculated as the following equation.

Wij =
1

Aij + 0.01
(12)

With the weighted vector, we can calculate the weighted

average feature of the track as shown in the follow equation

fti =
∑si

j=0
F (Ti)j ∗Wj (13)

Where fti is the weighted features of Ti, and F (Ti) is

the feature set of Ti. Then we can get the image-to-track

distance matrix Dist(Q, t) to get the ReID result and tile

tracks’ images.

4.2. Mining additional dataset to domain adaption

Data is vital for deep learning tasks, and in general, addi-

tional data from the same domain will contribute to a great

improvement of the performance, while as for the data from

different domains, the effect for the performance is doubt-

ful. The reasons may lie in that additional data can dilute the

distribution of the original dataset to some extent and make

the distribution of the prediction results closer to the addi-

tional datasets. To tackle this problem, we utilize the model

trained by the original dataset to generate the features of

additional datasets. With the newly generated features as

gallery and the features of the original datasets as query, we

can retrieve the data that is closer to the original dataset. As

shown in the experimental results, the ranking results from

other datasets by the training data of AI City 2019 track2

can really match well in appearance. For additional dataset,

we experiment on VeRi-776[9] and our own datasets.

5. Experiment

5.1. Implementation Details

Our algorithm is implemented in PyTorch 1.0.1. The

experiments are performed on four GeForce GTX TITAN

XP GPUs. In the vehicle ReID training process, we use

ResNet50 as the backbone. In the first 10 epoch, we use

the warmup operation to initialize the network with a small

learning rate. We perform data augumentation by random

erasing and random padding. Label smoothing is used to

generate the soft label. As pointed by [10], BNNeck is used

to perform BN operations after the final fully connected

layer and then the feature is used for ID loss. In the in-

ference phase, the feature before BNNeck is used for better
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performance. L2 normalization is used to normalize the fea-

ture of each vehicle. We set the similarity threshold to 0.7.

The similarity between two trajectories is not considered to

be the same identification. We train the vehicle ReID model

in the Track2 dataset with 73 IDs among 333 IDs selected

as the validation set and we use top100 mean average pre-

cision(mAP) to evaluate the performance. The performance

of the MTMC task is evaluated in the training set in Track1.

The results of the vehicle ReID model in the validation can

be seen in Figure 5.

Figure 5. Illustration of vehicle ReID model. The first image is the

query image and the other ten images are the 10-nearest neighbors.

Green and blue box correspond to the positives and negatives, re-

spectively.

5.2. Ablation Analyses in Track1

Influence of MTSC methods. We compare our MTSC

method with DeepSort[23], MOANA[18], TC[20], which is

shown in Table 1. The introduced MTSC methods achieves

the better performance in our experiments because the in-

troduced MTSC methods has higher recall.

Influence of Clustering Methods. Besides, we compare

our constrained hierarchical clustering with DBSCAN and

K-means. As can be seen in Table 1, our proposed method

is far ahead of DBSCAN and K-means.

Influence of Loss Functions. In the experiment, we try

different combination of different loss functions, as shown

in Table 1. By adding cluster loss, the mAP will decrease

with higher IDF1, because cluster loss is more suitable for

MTMC task. The trajectory consistent loss contribute to

both mAP and IDF1. In the table, we come to the conclu-

sion that trajectory feature fusion can boost the performance

in MTMC task.

Influence of Spatial-Temporal Cue. In table1, we eval-

uate the importance of spatial-temporal cue. When we only

use the baseline methods, the feature of the vehicle is not

so powerful. Therefore by introducing the spatial-temporal

cue, it gains a 1.1% improvement in IDF1. When the trajec-

tory feature fusion and effective loss functions are utilized,

the performance improvement brought by spatial-temporal

cue is minor

AI City Track1 MTMC results

mAP IDF1 IDP IDR

DeepSORT+C+TC+SP+TF+CHC 0.635 0.693 0.684 0.703

TC+C+TC+SP+TF+CHC 0.635 0.715 0.706 0.725

MOANA+C+TC+SP+TF+CHC 0.635 0.680 0.669 0.692

Baseline(B) + CHC 0.641 0.757 0.734 0.782

B + SP + CHC 0.641 0.768 0.766 0.772

B+TF+CHC 0.641 0.803 0.771 0.839

B+TF+DBSCAN 0.641 0.598 0.593 0.604

B+TF+K-means 0.641 0.497 0.502 0.494

B+C+TF+CHC 0.631 0.812 0.785 0.841

B+C+TC+TF+CHC 0.635 0.819 0.791 0.849

B+C+TC+SP+TF+CHC 0.635 0.826 0.801 0.853

B+C+TC+SP+TF+CHC(TestSet) 0.730 0.665 0.693 0.640

Table 1. The table shows the mAP in vehicle ReID validation set

and IDF1, IDP, IDR in Track1 training set, where Baseline uses

only cross entropy and batch hard triplet loss, C represents the

cluster loss function, TC represents the trajectory consistent loss

function, SP represents the spatial-temporal cue, TF represents

trajectory feature fusion, CHC represents constrained hierarchical

clustering.

5.3. Ablation Analyses in Track2

Influences of the Number of Batch Size. The mini-

batch of triplet loss contains B = P ∗K , where P and K
denote the number of different vehicles and the number of

different images per vehicle, respectively. The experiment

result is shown in Table 6. As can be seen, P = 16,K = 8
achieves the best performance.

Figure 6. The figure shows the mAP and cmc1 in the validation in

Track2 for different image size.

Influences of Image Size. We trained models without

center loss and set P = 16, K = 8 in 4 GPUs with 32

images per GPU. As shown in Figure 7, the image size is a

pretty importance factor for the performance of ReID mod-

els. When the input size of the image becomes larger within

a certain range, the performance become better. The input

size of 320 × 320 achieves best performance in the experi-

ment.

Influence of Different Ranking Method. In the exper-

iment, we try different ranking methods on the validation
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Figure 7. The figure shows the mAP and cmc1 in the validation in

Track2 for different image size.

Ranking Method mAP cmc1

I2I(+rr) 0.635(0.7232) 0.918(0.9232)

I2T+average feature(+rr) 0.6941(0.7417) 0.9321(0.9238)

I2I+weighted feature(+rr) 0.7315(0.7503) 0.9235(0.9385)

Table 2. The table shows the mAP and cmc1 in the validation

in Track2 for different ranking method, where rr represents re-

ranking method, I2I represents image-to-image, I2T represents

image-to-track.)

Data-fusion Method mAP cmc1

A 0.585 0.872

A+V(1/2) 0.630 0.904

A+V(all) 0.635 0.918

A+V(mining 1/2) 0.640 0.925

A+V(all)+O(all) 0.654 0.930

A+V(mining)+O(mining) 0.670 0.942

Table 3. The table shows the mAP and cmc1 in the validation in

Track2 for different ranking method.A represent AICITY Track2

training data, V represents VeRi-776 dataset, O represents our own

datasets

set, and the results as shown in Table 2. In these methods,

we all use re-ranking to achieve a better performance. By

adding the track info and calculating the average features

of the track, the mAP can improve by 1.9%. And it can

make further improvement by the weighted features gener-

ated from our algorithm.

Influence of Different Data-fusion Methods. For data-

fusion, we attempt two methods: adding all additional data

and adding mining data by the method of section 4.2. The

experimental results are shown in Table 3. There is no

improvement than without additional data for the former

method. By mining adaptive data, the mAP can improve

the performance by nearly 1%.

5.4. Performance Evaluation of Challenge Contest.

Here we (team ID 12) report our challenge contest per-

formance of the two tracks: City-Scale Multi-Camera Vehi-

AI City Track2 ReID Results

Method mAP cmc1

MoVI+BH[19] 0.265 0.484

PCB + additional data + rr 0.674 0.754

MGN + additional data + rr 0.691 0.765

Ours+rr 0.730 0.816
Table 4. The table shows the results of different method on Track2

Test Set, where rr represents re-ranking.

Performance evaluation of Track1

Team ID IDF1 Rank

21 0.7059 1

49 0.6865 2

12(Ours) 0.6653 3

53 0.6644 4

97 0.6519 5

59 0.5987 6

36 0.4924 7

107 0.4504 8

Table 5. Performance evaluation of challenge contest in Track1.

Performance Evaluation of Track2

Team ID rank100-mAP Rank

59 0.8554 1

21 0.7917 2

97 0.7589 3

4 0.7560 4

12(Ours) 0.7302 5

53 0.6793 6

131 0.6091 7

5 0.6078 8

Table 6. Performance Evaluation of challenge contest in Track2.

cle Tracking(Track1) and City-Scale Multi-Camera Vehicle

Re-Identification(Track2).

In Track1, our IDF1 score is 0.6653, which ranks number

3 in the overall evaluation. In Track2, we rank number 5

among all the teams with the mAP of 0.7302, as can been in

Tabel 4. The Performance evaluation of Track1 and Track2

are shown in Table5, Table6, respectively.

6. Conclusion

In Track1, we fully utilize clustering loss and trajectory

consistency loss to get powerful visual vehicle features for

MTMC task. Trajectory-based features are used to gener-

ate the appearance similarity matrix. Spatial-temporal cue

is excavated to rescore the appearance similarity matrix, as

a supplement of the appearance feature. After that, we use

hierarchical clustering with camera constraints to obtain the

cluster results of all the trajectories. In Track2, a image-

to-track ReID ranking method with weighted feature is pro-

posed to capture more temporal information in the trajec-

tory. Besides, a data mining methods is utilized to help the

training more stable and effective.
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